• Title/Summary/Keyword: Speed Prediction

Search Result 1,508, Processing Time 0.028 seconds

A Study on Prediction and Application of ECG Data Compression Rate at Zero-Oder Compression (Zero-Order 압축 방식에서 ECG 데이터 압축률 예측과 적용에 관한 연구)

  • 안형민;김영길
    • Proceedings of the IEEK Conference
    • /
    • 1999.11a
    • /
    • pp.513-516
    • /
    • 1999
  • I here are many kinds of method to compress data. To very simple methods from very complex methods, a kind is various. In this study, the simplest form of the Tolerance-Comparison method, zero-order method is used. Using this method, despite using low speed CPUs, it is possible to compress real time data. So this method is suitable for ECG holler system. In this study, to complement zero-order method, it is needed to develop prediction technique and to research ways to apply the technique.

  • PDF

Preliminary power predication of waterjet driven craft (Waterjet 추진선의 초기 성능추정)

  • 최군일
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2001.05a
    • /
    • pp.90-94
    • /
    • 2001
  • A Waterjet has been widely used for the propulsion of various speed range of marine vehicles due to its many advantages compared with the conventional screw propellers. In this paper, a power prediction based on momentum flux method is presented for the preliminary estimation of required power and selection of propulsion system for the waterjet driven craft. A theoretical basis of the mechanism of the waterjet is given and some of the empirical formulas are given as well. Finally the influence of intake type and nozzle exit velocity on the efficiency will be discussed.

  • PDF

A Study on Aerodynamic and Aeroacoustic Characteristics around Pantograph (판토그라프 주변의 유동 및 소음 특성에 관한 연구)

  • 유승원;민옥기;박춘수;정흥채
    • Proceedings of the KSR Conference
    • /
    • 2000.05a
    • /
    • pp.529-536
    • /
    • 2000
  • This paper describes the analysis of aerodynamics and the prediction of airflow induced noise around simplified pantograph. First, computational fluid dynamics (CFD) is conducted far several model to evaluate linear/nonlinear flow field characteristics due to high speed flow and the CFD results support the computational aeroacoustics. The accurate prediction of the aeroacoustic analysis is necessary for designers to control and reduce the airflow induced noise. We adopt the acoustic analogy based on Ffowcs Williams- Hawkings (FW-H) equation and predict aeroacoustic noise.

  • PDF

압축 착화 기관의 연소 변동 특성에 관한 연구

  • 이창식
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.9 no.1
    • /
    • pp.69-76
    • /
    • 1987
  • This paper deals with the theoretical prediction and cyclic variation of combustion characteristics in a four stroke, single0cylinder, diesel engine. Theoretical calculations employed a simple empirical model of analysis of energy equation for the thermodynamic system of engine cylinder. The cyclic variation of combustion characteristics is investigated, in term of frequency distribution and standard deviation of peak characteristics, as obtained by combustion analyzer system. The results of theoretical prediction are shown to be in close agreement with the experimental data. The effect of fuel injection timing, engine speed, cooling water temperature, and the compression ratio on the cyclic variations of combustion characteristics were discussed.

  • PDF

Vibrational Behavior of Ship Springing and Its Prediction (선박의 Springing 진동 현상과 예측 방법)

  • 이수목;정건화
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11b
    • /
    • pp.1055-1060
    • /
    • 2001
  • Springing phenomena of ships is introduced with its concept, research history and approach methodology. Being a hydroelasticity problem, non-linear vibration and stochastic process, springing was formulated and modeled in vibration point of view separating hydrodynamic force into system properties and excitation force. Both RAO and response spectrum as well as wave spectrum were presented as a case study of springing analysis for a flexible vessel with wide breadth. The effect of advance speed, heading angle and loading condition were investigated as parametric study. The results and observations showed availability of analysis for the prediction of the ship springing behavior.

  • PDF

Predicting the Aerodynamic Characteristics of 2D Airfoil and the Performance of 3D Wind Turbine using a CFD Code (CFD에 의한 2D 에어포일 공력특성 및 3D 풍력터빈 성능예측)

  • Kim, Bum-Suk;Kim, Mann-Eung;Lee, Young-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.32 no.7
    • /
    • pp.549-557
    • /
    • 2008
  • Despite of the laminar-turbulent transition region co-exist with fully turbulence region around the leading edge of an airfoil, still lots of researchers apply to fully turbulence models to predict aerodynamic characteristics. It is well known that fully turbulent model such as standard k-model couldn't predict the complex stall and the separation behavior on an airfoil accurately, it usually leads to over prediction of the aerodynamic characteristics such as lift and drag forces. So, we apply correlation based transition model to predict aerodynamic performance of the NREL (National Renewable Energy Laboratory) Phase IV wind turbine. And also, compare the computed results from transition model with experimental measurement and fully turbulence results. Results are presented for a range of wind speed, for a NREL Phase IV wind turbine rotor. Low speed shaft torque, power, root bending moment, aerodynamic coefficients of 2D airfoil and several flow field figures results included in this study. As a result, the low speed shaft torque predicted by transitional turbulence model is very good agree with the experimental measurement in whole operating conditions but fully turbulent model(${\kappa}-\;{\varepsilon}$) over predict the shaft torque after 7m/s. Root bending moment is also good agreement between the prediction and experiments for most of the operating conditions, especially with the transition model.

A Study of the Characteristics of Input Boundary Conditions for the Prediction of Urban Air Flow based on Fluid Dynamics (유체 역학 기반 도시 기류장 예측을 위한 입력 경계 바람장 특성 연구)

  • Lee, Tae-Jin;Lee, Soon-Hwan;Lee, Hwawoon
    • Journal of Environmental Science International
    • /
    • v.25 no.7
    • /
    • pp.1017-1028
    • /
    • 2016
  • Wind information is one of the major inputs for the prediction of urban air flow using computational fluid dynamic (CFD) models. Therefore, the numerical characteristics of the wind data formed at their mother domains should be clarified to predict the urban air flow more precisely. In this study, the formation characteristics of the wind data in the Seoul region were used as the inlet wind information for a CFD based simulation and were analyzed using numerical weather prediction models for weather research and forecasting (WRF). Because air flow over the central part of the Korean peninsula is often controlled not only by synoptic scale westerly winds but also by the westerly sea breeze induced from the Yellow Sea, the westerly wind often dominates the entire Seoul region. Although simulations of wind speed and air temperature gave results that were slightly high and low, respectively, their temporal variation patterns agreed well with the observations. In the analysis of the vertical cross section, the variation of wind speed along the western boundary of Seoul is simpler in a large domain with the highest horizontal resolution as compared to a small domain with the same resolution. A strong convergence of the sea breeze due to precise topography leads to the simplification of the wind pattern. The same tendency was shown in the average vertical profiles of the wind speed. The difference in the simulated wind pattern of two different domains is greater during the night than in the daytime because of atmospheric stability and topographically induced mesoscale forcing.

Low-Noise Design of Passage of Idle Speed Control Actuator in Automotive Engines Using Scaling Laws for Noise Prediction (소음예측 비례식을 이용한 자동차 엔진 공회전 속도 제어 장치 유로의 저소음 디자인)

  • Cheong, Cheol-Ung;Kim, Jae-Hyun;Park, Yong-Hwan;Lee, Soo-Gab
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.283-290
    • /
    • 2007
  • Recently, plastic products in air-intake parts of automotive engines have become very popular due to advantages that include reduced weight, constricted cost, and lower intake air temperature. However, flow-induced noise in air-intake parts becomes a more serious problem for plastic intake-manifolds than for conventional aluminum-made manifolds. This is due to the fact that plastic manifolds transmit more noise owing to their lower material density. Internal aerodynamic noise from an Idle Speed control Actuator (ISA) is qualitatively analyzed by using a scaling law, which is expressed with some flow parameters such as pressure drop, maximum flow velocity, and turbulence kinetic energy. First, basic flow characteristics through ISA passage are identified with the flow predictions obtained by applying Computational Fluid Dynamics techniques. Then, the effects on ISA passage noise of each design factors including the duct turning shape and vane geometries are assessed. Based on these results, the preliminary low noise design for the ISA passage are proposed. The current method for the prediction of internal aerodynamic noise consists of the steady CFD and the scaling laws for the noise prediction. This combination is most cost-effective, compared with other methods, and therefore is believed to be suited for the preliminary design tool in the industrial field.

  • PDF

A Prediction Model of Droplet Size of Rotary Spray Dryer at Various Operating Conditions (원심식(遠心式) 분무건조장치(噴霧乾燥裝置)의 작동조건(作動條件)에 따른 분무입자(噴霧粒子)의 입도예측(粒度豫測) 모델)

  • Noh, S.H.;Kim, K.B.;Lee, J.W.;Lee, S.J.
    • Journal of Biosystems Engineering
    • /
    • v.17 no.3
    • /
    • pp.229-236
    • /
    • 1992
  • In an effort to localize the spray-dryer which is markedly used for drying food materials, a experiment was carried out with a wheel type atomizer locally designed and manufactured to evaluate the effect of rotational speed, feed rate and physical properties of liquid food material on the droplet size, and to develop a model to predict the droplet size sprayed at various operational conditions. The result are summarized as follows. 1. The frequency of droplet size sprayed from the atomizer at every treatment were similar to normal distributions. 2. Under the test conditions adopted in this study, that is, rotational speed of the atomizer ranging from 15,000 to 20,000 rpm (55.0 m/sec - 73.3 m/sec), feed rate from 14 to 37 kg/hr and viscosity of the material from 1.14 to 350 cP, the mean volume-surface dia. of droplets was decreased as increase in rotational speed and was not affected significantly by the feed rate and viscosity. 3. Through the dimensional analysis, a prediction model was developed as follows : $$\frac{Dvs}{r}=K[\frac{Q}{{\mu}r}]^a[\frac{rN^2}{g}]^b[\frac{{\rho}^2r^3g}{{\mu}^2}]^c[\frac{L}{r}]^d$$ and it was proved that the above model was better in degree of fitness than other models reported. 4. A prediction equation for the droplet size sprayed from the atomizer under the test was expressed as follows : $$\frac{Dvs}{r}=0.0215[\frac{Q}{{\mu}r}]^{0.06}[\frac{rN^2}{g}]^{0.3314}[\frac{{\mu}^2}{{\rho}^2r^3g}]^{0.0158}$$.

  • PDF

Low-noise Design of Passage of Idle Speed Control Actuator In Automotive Engines Using Scaling Laws for Noise Prediction (소음예측 비례식을 이용한 자동차 엔진 공회전 속도 제어 장치 유로의 저소음 설계)

  • Cheong, Cheol-Ung;Kim, Jae-Hyun;Kim, Sung-Tae;Park, Yong-Hwan;Lee, Soo-Gab
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.8
    • /
    • pp.683-692
    • /
    • 2007
  • Recently, plastic products in air-intake parts of automotive engines have become very popular due to advantages that include reduced weight, constricted cost, and lower intake air temperature. However, flow-induced noise in air-intake parts becomes a more serious problem for plastic intake-manifolds than for conventional aluminum-made manifolds. This is due to the fact that plastic manifolds transmit more noise owing to their lower material density. Internal aerodynamic noise from an idle speed control actuator(ISA) is qualitatively analyzed by using a scaling law, which is expressed with some flow parameters such as pressure drop, maximum flow velocity, and turbulence kinetic energy. First, basic flow characteristics through ISA passage are identified with the flow predictions obtained by applying computational fluid dynamics techniques. Then, the effects on ISA passage noise of each design factors including the duct turning shape and vane geometries are assessed. Based on these results, the preliminary low noise design for the ISA passage are proposed. The current method for the prediction of internal aerodynamic noise consists of the steady CFD and the scaling laws for the noise prediction. This combination is most cost-effective, compared with other methods, and therefore is believed to be suited for the preliminary design tool in the industrial field.