• Title/Summary/Keyword: Speed Prediction

Search Result 1,508, Processing Time 0.028 seconds

Sensitivity Analysis of Numerical Weather Prediction Model with Topographic Effect in the Radiative Transfer Process (복사전달과정에서 지형효과에 따른 기상수치모델의 민감도 분석)

  • Jee, Joon-Bum;Min, Jae-Sik;Jang, Min;Kim, Bu-Yo;Zo, Il-Sung;Lee, Kyu-Tae
    • Atmosphere
    • /
    • v.27 no.4
    • /
    • pp.385-398
    • /
    • 2017
  • Numerical weather prediction experiments were carried out by applying topographic effects to reduce or enhance the solar radiation by terrain. In this study, x and ${\kappa}({\phi}_o,\;{\theta}_o)$ are precalculated for topographic effect on high resolution numerical weather prediction (NWP) with 1 km spatial resolution, and meteorological variables are analyzed through the numerical experiments. For the numerical simulations, cases were selected in winter (CASE 1) and summer (CASE 2). In the CASE 2, topographic effect was observed on the southward surface to enhance the solar energy reaching the surface, and enhance surface temperature and temperature at 2 m. Especially, the surface temperature is changed sensitively due to the change of the solar energy on the surface, but the change of the precipitation is difficult to match of topographic effect. As a result of the verification using Korea Meteorological Administration (KMA) Automated Weather System (AWS) data on Seoul metropolitan area, the topographic effect is very weak in the winter case. In the CASE 1, the improvement of accuracy was numerically confirmed by decreasing the bias and RMSE (Root mean square error) of temperature at 2 m, wind speed at 10 m and relative humidity. However, the accuracy of rainfall prediction (Threat score (TS), BIAS, equitable threat score (ETS)) with topographic effect is decreased compared to without topographic effect. It is analyzed that the topographic effect improves the solar radiation on surface and affect the enhancements of surface temperature, 2 meter temperature, wind speed, and PBL height.

Building of Prediction Model of Wind Power Generationusing Power Ramp Rate (Power Ramp Rate를 이용한 풍력 발전량 예측모델 구축)

  • Hwang, Mi-Yeong;Kim, Sung-Ho;Yun, Un-Il;Kim, Kwang-Deuk;Ryu, Keun-Ho
    • Journal of the Korea Society of Computer and Information
    • /
    • v.17 no.1
    • /
    • pp.211-218
    • /
    • 2012
  • Fossil fuel is used all over the world and it produces greenhouse gases due to fossil fuel use. Therefore, it cause global warming and is serious environmental pollution. In order to decrease the environmental pollution, we should use renewable energy which is clean energy. Among several renewable energy, wind energy is the most promising one. Wind power generation is does not produce environmental pollution and could not be exhausted. However, due to wind power generation has irregular power output, it is important to predict generated electrical energy accurately for smoothing wind energy supply. There, we consider use ramp characteristic to forecast accurate wind power output. The ramp increase and decrease rapidly wind power generation during in a short time. Therefore, it can cause problem of unbalanced power supply and demand and get damaged wind turbine. In this paper, we make prediction models using power ramp rate as well as wind speed and wind direction to increase prediction accuracy. Prediction model construction algorithm used multilayer neural network. We built four prediction models with PRR, wind speed, and wind direction and then evaluated performance of prediction models. The predicted values, which is prediction model with all of attribute, is nearly to the observed values. Therefore, if we use PRR attribute, we can increase prediction accuracy of wind power generation.

Wind Prediction with a Short-range Multi-Model Ensemble System (단시간 다중모델 앙상블 바람 예측)

  • Yoon, Ji Won;Lee, Yong Hee;Lee, Hee Choon;Ha, Jong-Chul;Lee, Hee Sang;Chang, Dong-Eon
    • Atmosphere
    • /
    • v.17 no.4
    • /
    • pp.327-337
    • /
    • 2007
  • In this study, we examined the new ensemble training approach to reduce the systematic error and improve prediction skill of wind by using the Short-range Ensemble prediction system (SENSE), which is the mesoscale multi-model ensemble prediction system. The SENSE has 16 ensemble members based on the MM5, WRF ARW, and WRF NMM. We evaluated the skill of surface wind prediction compared with AWS (Automatic Weather Station) observation during the summer season (June - August, 2006). At first stage, the correction of initial state for each member was performed with respect to the observed values, and the corrected members get the training stage to find out an adaptive weight function, which is formulated by Root Mean Square Vector Error (RMSVE). It was found that the optimal training period was 1-day through the experiments of sensitivity to the training interval. We obtained the weighted ensemble average which reveals smaller errors of the spatial and temporal pattern of wind speed than those of the simple ensemble average.

Hardware Design of Intra Prediction Angular Mode Decision for HEVC Encoder (HEVC 부호기를 위한 Intra Prediction Angular 모드 결정 하드웨어 설계)

  • Choi, Jooyong;Ryoo, Kwangki
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.10a
    • /
    • pp.145-148
    • /
    • 2016
  • In this paper, we propose a design of Intra Prediction angular mode decision for high-performance HEVC encoder. Intra Prediction works by performing all 35 modes for efficient encoding. However, in order to process all of the 35 modes, the computational complexity and operational time required are high. Therefore, this paper proposes comparing the difference in the value of the original image pixel, using an algorithm that determines Angular mode efficiently. This new algorithm reduces the Hardware size. The hardware which is proposed was designed using Verilog HDL and was implemented in 65nm technology. Its gate count is 14.9k and operating speed is 2GHz.

  • PDF

NUMERICAL ANALYSIS OF THE GUST GENERATOR FOR KARI LOW SPEED WIND TUNNEL (KARI 중형 아음속 풍동용 돌풍 발생기의 수치해석)

  • Park Y. M.;Kwon K. J.;Lee S. W.;Kim T. W.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.275-279
    • /
    • 2005
  • The vortex convection and induced flow field behind the KARI 3m x 4m LSWT gust generator was computed by using Computational Fluid Dynamics. For the accurate simulation of vortex convection, inviscid, laminar, Spalart-Allmars k-e and k-w turbulence models were tested with the NAL gust generator configuration and Spalart-Allmaras turbulence model was selected for the prediction of induced flow field behind the KARI LSWT gust generator. The wind tunnel test was also carried out at KARI LSWT and the results were compared with CFD prediction.

  • PDF

A Study on the Performance Prediction of Automotive Water Pump with Double Discharge Single Suction (자동차용 양토출 단흡입 워터펌프의 성능 예측에 관한 연구)

  • 허형석;박경석;이기수;원종필
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.3
    • /
    • pp.27-36
    • /
    • 2004
  • A Numerical analysis has been used to predict the performance in the automotive water pump with double discharge single suction. The influence of parameters such as coolant flow rate, rotational speed, ratio of blade height and clearance has been investigated. Also, the prediction of hydraulic performances such as static pressure rise, shaft power, hydraulic power and pump efficiency is carried out on the water pump including an impeller and a volute casing. A full size water pump test bench has been developed to validate the CFD flow model. Discharge flow rate, suction pressure, discharge pressure, rotational speed and torque measurements are provided. Coolant temperature is 8$0^{\circ}C$, water tank pressure is 1 kgf/$\textrm{cm}^2$ and flow rates vary.

Interior noise prediction of the high speed train using ray method (광음향기법을 이용한 한국형 고속전철의 실내소음 예측)

  • 김관주;박진규
    • Proceedings of the KSR Conference
    • /
    • 2000.11a
    • /
    • pp.157-164
    • /
    • 2000
  • This study is about predicting the interior pressure level of the korean high speed train using ray acoustic method. The motor car and the motor and passenger cabin are investigated under the environment of passing open countryside and inside tunnel of 350 km/hr. Calculated sound levels are compared with the proposed sound levels and suggestions about the transmission Joss values of isolating panels inside motor car and the guide lines of allowed sound power limit of motor equipments are provided. Results of TPI car show calculated interior sound level is below the proposed values for both cases of open countryside running and inside tunnel. Since ray acoustic method calculated only air borne noise component, real sound level of the motor car may be higher than prediction. Passenger cabins of TMI, TM5 show higher sound level than the proposed values, so window method was carried out to find the contribution of each panel components and point out the remedy of transmission path. Reduction of sound power of motor equipments should be condisered at the same time.

  • PDF

Depth-of-interest-based Bypass Coding-unit Algorithm for Inter-prediction in High-efficiency Video Coding

  • Rhee, Chae Eun
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.5 no.4
    • /
    • pp.231-234
    • /
    • 2016
  • The next-generation video coding standard known as High-Efficiency Video Coding (HEVC) was developed with the aim of doubling the bitrate reduction offered by H.264/Advanced Video Coding (AVC) at the expense of an increase in computational complexity. Mode decision with motion estimation is still one of the most time-consuming computations in HEVC, as it is with H.264/AVC. Several schemes for a fast mode decision have been presented in reference software and in other studies. However, a possible speed-up in conventional schemes is sometimes insignificant for videos that have inhomogeneous spatial and temporal characteristics. This paper proposes a bypass algorithm to skip large-block-size predictions for videos where small block sizes are preferred over large ones. The proposed algorithm does not overlap with those in previous works, and thus, is easily used with other fast algorithms. Consequently, an independent speed-up is possible.

A Study on the Relationship among the Concentration of Reacting Air Pollutants in Urban Atmosphere (도시 대기중에서 반응성 대기오염물질의 농도변화 상관성에 관한 연구)

  • Lee, Hwa-Woon;Kim, Yoo-Keun;Jang, Eun-Suk
    • Journal of Environmental Science International
    • /
    • v.6 no.4
    • /
    • pp.351-357
    • /
    • 1997
  • In the Atmosphere under the various physical and chemical condition different chemical reactions occur and there are a number of air pollutants which are generated by photochemical reaction by absorbing solar energy. Therefor various testing simulation was done as foundation work to develop the numerical model for the prediction of concentration of air pollutants. It was shown change of msjor air pollutants concentration In according to variation of photodissociation speed constant, Kl and Initial condition of air pollutants concentration which plays major role In photochemical reaction. The photochemical reaction model which was used In this study Is found to be useful for understanding relationship among the concentration of reacting air pollutants and the prediction of concentration of air pollutants in urban atmosphere.

  • PDF

Comparison and Evaluation of Anti-Windup PI Controllers

  • Li, Xin-Lan;Park, Jong-Gyu;Shin, Hwi-Beom
    • Journal of Power Electronics
    • /
    • v.11 no.1
    • /
    • pp.45-50
    • /
    • 2011
  • This paper proposes a method for comparing and evaluating anti-windup proportional-integral (PI) control strategies. The so-called PI plane is used and its coordinate is composed of the error and the integral state. In addition, an anti-windup PI controller with integral state prediction is proposed. The anti-windup scheme can be easily analyzed and evaluated on the PI plane in detail. Representative anti-windup methods are experimentally applied to the speed control of a vector-controlled induction motor driven by a pulse width modulated (PWM) voltage-source inverter (VSI). The experimental results compare the anti-windup PI controllers. It is empathized that the initial value of the integral state at the beginning of the linear range dominates the control performance in terms of overshoot and settling time.