• Title/Summary/Keyword: Speed Prediction

Search Result 1,522, Processing Time 0.026 seconds

Damage of Whole Crop Maize in Abnormal Climate Using Machine Learning (이상기상 시 사일리지용 옥수수의 기계학습을 이용한 피해량 산출)

  • Kim, Ji Yung;Choi, Jae Seong;Jo, Hyun Wook;Kim, Moon Ju;Kim, Byong Wan;Sung, Kyung Il
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.42 no.2
    • /
    • pp.127-136
    • /
    • 2022
  • This study was conducted to estimate the damage of Whole Crop Maize (WCM) according to abnormal climate using machine learning and present the damage through mapping. The collected WCM data was 3,232. The climate data was collected from the Korea Meteorological Administration's meteorological data open portal. Deep Crossing is used for the machine learning model. The damage was calculated using climate data from the Automated Synoptic Observing System (95 sites) by machine learning. The damage was calculated by difference between the Dry matter yield (DMY)normal and DMYabnormal. The normal climate was set as the 40-year of climate data according to the year of WCM data (1978~2017). The level of abnormal climate was set as a multiple of the standard deviation applying the World Meteorological Organization(WMO) standard. The DMYnormal was ranged from 13,845~19,347 kg/ha. The damage of WCM was differed according to region and level of abnormal climate and ranged from -305 to 310, -54 to 89, and -610 to 813 kg/ha bnormal temperature, precipitation, and wind speed, respectively. The maximum damage was 310 kg/ha when the abnormal temperature was +2 level (+1.42 ℃), 89 kg/ha when the abnormal precipitation was -2 level (-0.12 mm) and 813 kg/ha when the abnormal wind speed was -2 level (-1.60 m/s). The damage calculated through the WMO method was presented as an mapping using QGIS. When calculating the damage of WCM due to abnormal climate, there was some blank area because there was no data. In order to calculate the damage of blank area, it would be possible to use the automatic weather system (AWS), which provides data from more sites than the automated synoptic observing system (ASOS).

A Statistical model to Predict soil Temperature by Combining the Yearly Oscillation Fourier Expansion and Meteorological Factors (연주기(年週期) Fourier 함수(函數)와 기상요소(氣象要素)에 의(依)한 지온예측(地溫豫測) 통계(統計) 모형(模型))

  • Jung, Yeong-Sang;Lee, Byun-Woo;Kim, Byung-Chang;Lee, Yang-Soo;Um, Ki-Tae
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.23 no.2
    • /
    • pp.87-93
    • /
    • 1990
  • A statistical model to predict soil temperature from the ambient meteorological factors including mean, maximum and minimum air temperatures, precipitation, wind speed and snow depth combined with Fourier time series expansion was developed with the data measured at the Suwon Meteorolical Service from 1979 to 1988. The stepwise elimination technique was used for statistical analysis. For the yearly oscillation model for soil temperature with 8 terms of Fourier expansion, the mean square error was decreased with soil depth showing 2.30 for the surface temperature, and 1.34-0.42 for 5 to 500-cm soil temperatures. The $r^2$ ranged from 0.913 to 0.988. The number of lag days of air temperature by remainder analysis was 0 day for the soil surface temperature, -1 day for 5 to 30-cm soil temperature, and -2 days for 50-cm soil temperature. The number of lag days for precipitaion, snow depth and wind speed was -1 day for the 0 to 10-cm soil temperatures, and -2 to -3 days for the 30 to 50-cm soil teperatures. For the statistical soil temperature prediction model combined with the yearly oscillation terms and meteorological factors as remainder terms considering the lag days obtained above, the mean square error was 1.64 for the soil surfac temperature, and ranged 1.34-0.42 for 5 to 500cm soil temperatures. The model test with 1978 data independent to model development resulted in good agreement with $r^2$ ranged 0.976 to 0.996. The magnitudes of coeffcicients implied that the soil depth where daily meteorological variables night affect soil temperature was 30 to 50 cm. In the models, solar radiation was not included as a independent variable ; however, in a seperated analysis on relationship between the difference(${\Delta}Tmxs$) of the maximum soil temperature and the maximum air temperature and solar radiation(Rs ; $J\;m^{-2}$) under a corn canopy showed linear relationship as $${\Delta}Tmxs=0.902+1.924{\times}10^{-3}$$ Rs for leaf area index lower than 2 $${\Delta}Tmxs=0.274+8.881{\times}10^{-4}$$ Rs for leaf area index higher than 2.

  • PDF

Recent Progress in Air-Conditioning and Refrigeration Research : A Review of Papers Published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 2016 (설비공학 분야의 최근 연구 동향 : 2016년 학회지 논문에 대한 종합적 고찰)

  • Lee, Dae-Young;Kim, Sa Ryang;Kim, Hyun-Jung;Kim, Dong-Seon;Park, Jun-Seok;Ihm, Pyeong Chan
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.29 no.6
    • /
    • pp.327-340
    • /
    • 2017
  • This article reviews the papers published in the Korean Journal of Air-Conditioning and Refrigeration Engineering during 2016. It is intended to understand the status of current research in the areas of heating, cooling, ventilation, sanitation, and indoor environments of buildings and plant facilities. Conclusions are as follows. (1) The research works on the thermal and fluid engineering have been reviewed as groups of flow, heat and mass transfer, the reduction of pollutant exhaust gas, cooling and heating, the renewable energy system and the flow around buildings. CFD schemes were used more for all research areas. (2) Research works on heat transfer area have been reviewed in the categories of heat transfer characteristics, pool boiling and condensing heat transfer and industrial heat exchangers. Researches on heat transfer characteristics included the results of the long-term performance variation of the plate-type enthalpy exchange element made of paper, design optimization of an extruded-type cooling structure for reducing the weight of LED street lights, and hot plate welding of thermoplastic elastomer packing. In the area of pool boiling and condensing, the heat transfer characteristics of a finned-tube heat exchanger in a PCM (phase change material) thermal energy storage system, influence of flow boiling heat transfer on fouling phenomenon in nanofluids, and PCM at the simultaneous charging and discharging condition were studied. In the area of industrial heat exchangers, one-dimensional flow network model and porous-media model, and R245fa in a plate-shell heat exchanger were studied. (3) Various studies were published in the categories of refrigeration cycle, alternative refrigeration/energy system, system control. In the refrigeration cycle category, subjects include mobile cold storage heat exchanger, compressor reliability, indirect refrigeration system with $CO_2$ as secondary fluid, heat pump for fuel-cell vehicle, heat recovery from hybrid drier and heat exchangers with two-port and flat tubes. In the alternative refrigeration/energy system category, subjects include membrane module for dehumidification refrigeration, desiccant-assisted low-temperature drying, regenerative evaporative cooler and ejector-assisted multi-stage evaporation. In the system control category, subjects include multi-refrigeration system control, emergency cooling of data center and variable-speed compressor control. (4) In building mechanical system research fields, fifteenth studies were reported for achieving effective design of the mechanical systems, and also for maximizing the energy efficiency of buildings. The topics of the studies included energy performance, HVAC system, ventilation, renewable energies, etc. Proposed designs, performance tests using numerical methods and experiments provide useful information and key data which could be help for improving the energy efficiency of the buildings. (5) The field of architectural environment was mostly focused on indoor environment and building energy. The main researches of indoor environment were related to the analyses of indoor thermal environments controlled by portable cooler, the effects of outdoor wind pressure in airflow at high-rise buildings, window air tightness related to the filling piece shapes, stack effect in core type's office building and the development of a movable drawer-type light shelf with adjustable depth of the reflector. The subjects of building energy were worked on the energy consumption analysis in office building, the prediction of exit air temperature of horizontal geothermal heat exchanger, LS-SVM based modeling of hot water supply load for district heating system, the energy saving effect of ERV system using night purge control method and the effect of strengthened insulation level to the building heating and cooling load.

A Fast Processor Architecture and 2-D Data Scheduling Method to Implement the Lifting Scheme 2-D Discrete Wavelet Transform (리프팅 스킴의 2차원 이산 웨이브릿 변환 하드웨어 구현을 위한 고속 프로세서 구조 및 2차원 데이터 스케줄링 방법)

  • Kim Jong Woog;Chong Jong Wha
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.42 no.4 s.334
    • /
    • pp.19-28
    • /
    • 2005
  • In this paper, we proposed a parallel fast 2-D discrete wavelet transform hardware architecture based on lifting scheme. The proposed architecture improved the 2-D processing speed, and reduced internal memory buffer size. The previous lifting scheme based parallel 2-D wavelet transform architectures were consisted with row direction and column direction modules, which were pair of prediction and update filter module. In 2-D wavelet transform, column direction processing used the row direction results, which were not generated in column direction order but in row direction order, so most hardware architecture need internal buffer memory. The proposed architecture focused on the reducing of the internal memory buffer size and the total calculation time. Reducing the total calculation time, we proposed a 4-way data flow scheduling and memory based parallel hardware architecture. The 4-way data flow scheduling can increase the row direction parallel performance, and reduced the initial latency of starting of the row direction calculation. In this hardware architecture, the internal buffer memory didn't used to store the results of the row direction calculation, while it contained intermediate values of column direction calculation. This method is very effective in column direction processing, because the input data of column direction were not generated in column direction order The proposed architecture was implemented with VHDL and Altera Stratix device. The implementation results showed overall calculation time reduced from $N^2/2+\alpha$ to $N^2/4+\beta$, and internal buffer memory size reduced by around $50\%$ of previous works.

Improvements for Atmospheric Motion Vectors Algorithm Using First Guess by Optical Flow Method (옵티컬 플로우 방법으로 계산된 초기 바람 추정치에 따른 대기운동벡터 알고리즘 개선 연구)

  • Oh, Yurim;Park, Hyungmin;Kim, Jae Hwan;Kim, Somyoung
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.5_1
    • /
    • pp.763-774
    • /
    • 2020
  • Wind data forecasted from the numerical weather prediction (NWP) model is generally used as the first-guess of the target tracking process to obtain the atmospheric motion vectors(AMVs) because it increases tracking accuracy and reduce computational time. However, there is a contradiction that the NWP model used as the first-guess is used again as the reference in the AMVs verification process. To overcome this problem, model-independent first guesses are required. In this study, we propose the AMVs derivation from Lucas and Kanade optical flow method and then using it as the first guess. To retrieve AMVs, Himawari-8/AHI geostationary satellite level-1B data were used at 00, 06, 12, and 18 UTC from August 19 to September 5, 2015. To evaluate the impact of applying the optical flow method on the AMV derivation, cross-validation has been conducted in three ways as follows. (1) Without the first-guess, (2) NWP (KMA/UM) forecasted wind as the first-guess, and (3) Optical flow method based wind as the first-guess. As the results of verification using ECMWF ERA-Interim reanalysis data, the highest precision (RMSVD: 5.296-5.804 ms-1) was obtained using optical flow based winds as the first-guess. In addition, the computation speed for AMVs derivation was the slowest without the first-guess test, but the other two had similar performance. Thus, applying the optical flow method in the target tracking process of AMVs algorithm, this study showed that the optical flow method is very effective as a first guess for model-independent AMVs derivation.

Development of an Eating Habit Checklist for Screening Elementary School Children at High Risk of Energy Overintake (초등학생의 에너지 과잉섭취 위험 진단을 위한 식습관평가표 개발)

  • Yon, Mi-Yong;Hyun, Tai-Sun
    • Journal of Nutrition and Health
    • /
    • v.41 no.5
    • /
    • pp.414-427
    • /
    • 2008
  • The purpose of the study was to develop an eating habit checklist for screening elementary school children at high risk of energy overintake. Dietary habits, food intake, anthropometric data were collected from 142 children (80 boys and 62 girls) in the 4th to 6th grades of elementary schools. Energy intake, fat intake, and percentage of Estimated Energy Requirement (%EER) were used as indices to detect the risk of energy overintake of the children. Pearson correlation coefficients were calculated between dietary habit scores and energy overintake indices in order to select questions included in the checklist. TV watching during the meal, meal speed, meal amount, overintake frequency, eatingout frequency, snack frequency, frequency of eating Ramyun or fast foods showed significant correlations with energy overintake indices. Stepwise regression analysis was performed to give each item a different weight by prediction strength. To determine the cut-off point of the test score, sensitivity, specificity, and positive predictive values were calculated. The 7-item checklist with test results from 0 to 13 points was developed, and those with equal or higher than 5 points were diagnosed as a risk group of energy overintake. Among our subjects 13.4% was diagnosed as the risk group. Mean energy intake of the subjects in the risk group and the normal group were 2,650 kcal and 1,640 kcal, respectively. However, there were no significant differences of Index of Nutritional Quality (INQ) of the other nutrients except eating fiber between the risk group and the normal group. This checklist will provide a useful screening tool to identify children at high risk of energy overintake.

A Study on Prediction of Asian Dusts Using the WRF-Chem Model in 2010 in the Korean Peninsula (WRF-Chem 모델을 이용한 2010년 한반도의 황사 예측에 관한 연구)

  • Jung, Ok Jin;Moon, Yun Seob
    • Journal of the Korean earth science society
    • /
    • v.36 no.1
    • /
    • pp.90-108
    • /
    • 2015
  • The WRF-Chem model was applied to simulate the Asian dust event affecting the Korean Peninsula from 11 to 13 November 2010. GOCART dust emission schemes, RADM2 chemical mechanism, and MADE/SORGAM aerosol scheme were adopted within the WRF-Chem model to predict dust aerosol concentrations. The results in the model simulations were identified by comparing with the weather maps, satellite images, monitoring data of $PM_{10}$ concentration, and LIDAR images. The model results showed a good agreement with the long-range transport from the dust source area such as Northeastern China and Mongolia to the Korean Peninsula. Comparison of the time series of $PM_{10}$ concentration measured at Backnungdo showed that the correlation coefficient was 0.736, and the root mean square error was $192.73{\mu}g/m^3$. The spatial distribution of $PM_{10}$ concentration using the WRF-Chem model was similar to that of the $PM_{2.5}$ which were about a half of $PM_{10}$. Also, they were much alike in those of the UM-ADAM model simulated by the Korean Meteorological Administration. Meanwhile, the spatial distributions of $PM_{10}$ concentrations during the Asian dust events had relevance to those of both the wind speed of u component ($ms^{-1}$) and the PBL height (m). We performed a regressive analysis between $PM_{10}$ concentrations and two meteorological variables (u component and PBL) in the strong dust event in autumn (CASE 1, on 11 to 23 March 2010) and the weak dust event in spring (CASE 2, on 19 to 20 March 2011), respectively.

Spatial Patterns and Temporal Variability of the Haines Index related to the Wildland Fire Growth Potential over the Korean Peninsula (한반도 산불 확장 잠재도와 관련된 Haines Index의 시.공간적 특징)

  • Choi Cwang-Yong;Kim Jun-Su;Won Myoung-Soo
    • Journal of the Korean Geographical Society
    • /
    • v.41 no.2 s.113
    • /
    • pp.168-187
    • /
    • 2006
  • Windy meteorological conditions and dried fire fuels due to higher atmospheric instability and dryness in the lower troposphere can exacerbate fire controls and result in more losses of forest resources and residential properties due to enhanced large wildland fires. Long-term (1979-2005) climatology of the Haines Index reconstructed in this study reveals that spatial patterns and intra-annual variability of the atmospheric instability and dryness in the lower troposphere affect the frequency of wildland fire incidences over the Korean Peninsula. Exponential regression models verify that daily high Haines Index and its monthly frequency has statistically significant correlations with the frequency of the wildland fire occurrences during the fire season (December-April) in South Korea. According to the climatic maps of the Haines Index created by the Geographic Information System (GIS) using the Digital Elevation Model (DEM), the lowlands below 500m from the mean sea level in the northwestern regions of the Korean Peninsula demonstrates the high frequency of the Haines Index equal to or greater than five in April and May. The annual frequency of the high Haines Index represents an increasing trend across the Korean Peninsula since the mid-1990s, particularly in Gyeongsangbuk-do and along the eastern coastal areas. The composite of synoptic weather maps at 500hPa for extreme events, in which the high Haines Index lasted for several days consecutively, illustrates that the cold low pressure system developed around the Sea of Okhotsk in the extreme event period enhances the pressure gradient and westerly wind speed over the Korean Peninsula. These results demonstrate the need for further consideration of the spatial-temporal characteristics of vertical atmospheric components, such as atmospheric instability and dryness, in the current Korean fire prediction system.

Macroeconomic Consequences of Pay-as-you-go Public Pension System (부과방식 공적연금의 거시경제적 영향)

  • Park, Chang-Gyun;Hur, Seok-Kyun
    • KDI Journal of Economic Policy
    • /
    • v.30 no.2
    • /
    • pp.225-270
    • /
    • 2008
  • We analyze macroeconomic consequences of pay-as-you-go (PAYGO) public pension system with a simple overlapping generations model. Contrary to large body of existing literatures offering quantitative results based on simulation study, we take another route by adopting a highly simplified framework in search of qualitatively tractable analytical results. The main contribution of our results lies in providing a sound theoretical foundation that can be utilized in interpreting various quantitative results offered by simulation studies of large scale general equilibrium models. We present a simple overlapping generations model with a defined benefit(DB) PAYGO public pension system as a benchmark case and derive an analytical equilibrium solution utilizing graphical illustration. We also discuss the modifications of the benchmark model required to encompass a defined contribution(DC) public pension system into the basic framework. Comparative statics analysis provides three important implications; First, introduction and expansion of the PAYGO public pension, DB or DC, result in lower level of capital accumulation and higher expected rate of return on the risky asset. Second, it is shown that the progress of population aging is accompanied by lower capital stock due to decrease in both demand and supply of risky asset. Moreover, risk premium for risky asset increases(decreases) as the speed of population aging accelerates(decelerates) so that the possibility of so-called "the great meltdown" of asset market cannot be excluded although the odds are not high. Third, it is most likely that the switch from DB PAYGO to DC PAYGO would result in lower capital stock and higher expected return on the risky asset mainly due to the fact that the young generation regards DC PAYGO pension as another risky asset competing against the risky asset traded in the market. This theoretical prediction coincides with one of the firmly established propositions in empirical literature that the currently dominant form of public pension system has the tendency to crowd out private capital accumulation.

  • PDF

Development of an Automated Algorithm for Analyzing Rainfall Thresholds Triggering Landslide Based on AWS and AMOS

  • Donghyeon Kim;Song Eu;Kwangyoun Lee;Sukhee Yoon;Jongseo Lee;Donggeun Kim
    • Journal of the Korea Society of Computer and Information
    • /
    • v.29 no.9
    • /
    • pp.125-136
    • /
    • 2024
  • This study presents an automated Python algorithm for analyzing rainfall characteristics to establish critical rainfall thresholds as part of a landslide early warning system. Rainfall data were sourced from the Korea Meteorological Administration's Automatic Weather System (AWS) and the Korea Forest Service's Automatic Mountain Observation System (AMOS), while landslide data from 2020 to 2023 were gathered via the Life Safety Map. The algorithm involves three main steps: 1) processing rainfall data to correct inconsistencies and fill data gaps, 2) identifying the nearest observation station to each landslide location, and 3) conducting statistical analysis of rainfall characteristics. The analysis utilized power law and nonlinear regression, yielding an average R2 of 0.45 for the relationships between rainfall intensity-duration, effective rainfall-duration, antecedent rainfall-duration, and maximum hourly rainfall-duration. The critical thresholds identified were 0.9-1.4 mm/hr for rainfall intensity, 68.5-132.5 mm for effective rainfall, 81.6-151.1 mm for antecedent rainfall, and 17.5-26.5 mm for maximum hourly rainfall. Validation using AUC-ROC analysis showed a low AUC value of 0.5, highlighting the limitations of using rainfall data alone to predict landslides. Additionally, the algorithm's speed performance evaluation revealed a total processing time of 30 minutes, further emphasizing the limitations of relying solely on rainfall data for disaster prediction. However, to mitigate loss of life and property damage due to disasters, it is crucial to establish criteria using quantitative and easily interpretable methods. Thus, the algorithm developed in this study is expected to contribute to reducing damage by providing a quantitative evaluation of critical rainfall thresholds that trigger landslides.