• Title/Summary/Keyword: Speed Increasing

Search Result 2,964, Processing Time 0.038 seconds

The kinematic analysis of the ankle joint and EMG analysis of the lower limbs muscle for the different walking speed (보행 속도 변화에 따른 발목 관절의 운동학적 분석과 하퇴 근육의 근전도 분석)

  • Moon, Gon-Sung
    • Korean Journal of Applied Biomechanics
    • /
    • v.15 no.1
    • /
    • pp.177-195
    • /
    • 2005
  • The purpose of this study was to analyze the kinematic variables of ankle joints and EMG signal of the lower limbs muscle activity for the different walking speed. The subjects were 6 males of twenties. It was classified into three different walking speed-0.75m/s, 1.25m/s, 1.75m/s. The walking performances were filmed by high speed video camera and EMG signal was gained by ME3000P8 Measurement Unit. Tibialis anterior(TA), Gastrocnemius medial head(GM), Gastrocnemius lateral head(GL), Ssoleus(SO) were selected for the dorsiflexion and plantarflexion of the ankle joint. The result of this study were as follows: 1. In the gait cycle, The time parameters for the phases were showed significant difference without the terminal stance phase and terminal swing phase for the different walking speed. 2. The angle of ankle joint was no significant difference for each time point and MDF, MPF but increasing walking speed the angle had the increasing pattern slightly. 3. The angular velocity of ankle joint was showed the significant difference for LHC, RTO, RKC, LHU, MPF and MDF point along the walking speed. 4. TA was showed about 2-3 times muscle activity at the 1.75m/s than 1.25m/s in some phases. And it was showed the similar muscle activity between the 0.75m/s and 1.25m/s but, showed a little much muscle activity in the 0.75m/s. GM was showed about 2-3 times muscle activity in the 1.75m/s than 1.25m/s, and even much muscle activity at the 0.75m/s than 1.25m/s in some phases. GL was showed increasing pattern of muscle activity specially in the initial swing phase as the walking speed increased. SO was showed about 3 times muscle activity in the 1.75m/s than 1.25m/s during the plantarflexion of ankle joint. It was showed the similar muscle activity between the 0.75m/s and 1.25m/s but, showed a little much muscle activity in the 1.25m/s.

The Kinematic Comparison of Energy Walking and Normal Walking (에너지보행과 일반보행의 운동학적 비교)

  • Shin, Je-Min;Jin, Young-Wan
    • Korean Journal of Applied Biomechanics
    • /
    • v.16 no.4
    • /
    • pp.61-71
    • /
    • 2006
  • The purpose of this study was to compare kinematic characteristics on the limbs at 3 different walking speed during the energy and the normal walking. Eight subjects performed energy walking and normal walking at the slow speed(65 beats/min), the normal speed(115beats/min), the fast speed(160 beats/min). The 3-d angle was calculated by vector projected with least squares solution with three-dimensional cinematography(Motion Analysis corporation). The range of motion was calculated on the trunk, shoulder, elbow, hip, knee joint. The results showed that stride length was no difference of the two walking pattern. The duration of support phase was also no difference of the two walking pattern. The range of motion of shoulder joint significantly increased in the sagittal and frontal planes, and the range of motion of elbow joint significantly increased as the energy walking. The range of motion of hip joint had no significant difference in the any planes in changing of walking speed. But the most remarkable difference of the two walking patterns revealed at the trunk. The range of flexion/extension angle had significant increasing $2.36^{\circ}$ at normal speed, and the range of the right/left flexion angle had significant increasing below $4^{\circ}$ at the 3 walking speed, and The range of rotation angle had significant increasing $7.35^{\circ}$, $9.22^{\circ}$, respectively at the normal and slow speed. But there was no significant difference of range of motion at the hip and knee joints between energy walking and normal walking.

The Movement of Foot and the Shift of Ground Reaction Force in Batters according to the Ball Speed Increase (투구 속도 증가에 따른 타자의 발 움직임과 지면 반력의 변화)

  • Lee, Young-Suk;Eun, Seon-Deok
    • Korean Journal of Applied Biomechanics
    • /
    • v.14 no.3
    • /
    • pp.191-202
    • /
    • 2004
  • The batting performance in baseball is a repetitive movement. In order to make the stabilization of posture and the efficient shift of body weight, both the range of stance and stride are important. The previous studies explained that the consistent stride which included the amount of time, stance, and direction were needed. However, the batting performance is frequently changed according to the several speed of ball. Therefore, this study was to analyze the reaction time, the range of stance, the change of stride, and the change of GRF during the batting movement in three kinds of ball speed (120km/h, 130km/h, & 140km/h). Seven elite players are participated in this study. 1. The reaction time of the stride phase was short whereas the time of the swing phase was long according to the increasing ball speed. 2. The range of the stance was wide and the mediolateral direction of the stride was decreased according to the increasing ball speed. 3. In the three kinds of ball speed, the change of body weight was transferred to the center, the rear foot, and the front foot directions. The ball speed of 130km/h showed the high frequency of the suitable batting. At this ball speed, the movement of the body weight was shifted smoothly and the value of the Ground Reaction Force was large enough.

CO2 Emission Considering Condition of Vehicle Acceleration (차량 가속특성에 따른 이산화탄소(CO2) 배출량 비교)

  • Joo, Jin Yun;Oh, Heung Un
    • International Journal of Highway Engineering
    • /
    • v.17 no.3
    • /
    • pp.125-132
    • /
    • 2015
  • PURPOSES : The present study aims to evaluate the added $CO_2$ emissions incurred from accelerating operation when to increase the speed up to the allowed level. METHODS : The methodology used are basically the relationship between emission rates and vehicle speeds or acceleration rate. These rates together are used to calculate the added $CO_2$ emissions incurred from accelerating operation. RESULTS : It was resulted that the all the emission rates are increasing proportionally to vehicle speeds or acceleration rates. Additionally, it was also resulted that allowable speeds increasing, the added emission rates are increasing rapidly. CONCLUSIONS : It may be concluded that if the allowable speed ranges are managed, $CO_2$ emissions during vehicle operation are much reduced. From this reason, it was found that the allowable speed during highway design and operation would be much necessary

A Study on the Safety Braking Distance in ATP System (ATP시스템의 안전제동거리에 대한 연구)

  • Kim, Min-Kyu;Kim, Min-Seok;Kim, Jong-Soo;Yun, Yu-Boem;Lee, Jong-Woo
    • Proceedings of the KSR Conference
    • /
    • 2011.05a
    • /
    • pp.132-139
    • /
    • 2011
  • ATP(Automatic Train Protection) system in railroad signalling system is on-board signalling system which is controlled by train control information such as location and speed of trains. Safety is ensured by transmitting the train control information between on-board and wayside device in the ATP system. When an engineer disregards the speed limit on a tachometer, the train is automatically stopped by the on-board device. Recently, the studies of increasing speed of the train have been developed. Eurobalise in ERTMS/ETCS system is used in case that speed of trains is up to 500[km/h]. A study of safety braking distance is needed by increasing the speed of train in the ATP system. Train data and track data are required to calculate the safety braking distance. The train data includes formations of trains, length of trains, service brake and emergency brake etc. Also, the track data includes slope of track, curve of track, length of track, speed limit etc. In this paper, the speed profile is computed by analyzing the train and track data in the ATP system. It is demonstrated by applying to subway line 2 in Seoulmetro through the on-site test.

  • PDF

Characteristics of canola biodiesel fuel blended with diesel on the combustion and exhaust gas emissions in a compression ignition diesel engine (압축착화 디젤기관의 연소 및 배기가스에 대한 카롤라 바이오디젤 혼합 연료의 특성)

  • Yoon, Sam Ki;Kim, Min Soo;Choi, Nag Jung
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.9
    • /
    • pp.1081-1086
    • /
    • 2014
  • An experimental study was performed in order to compare with the case of using pure diesel the characteristics of combustion pressure and exhaust emissions when the engine speed was changed in a CRDI 4-cylinder diesel engine using biodiesel( Canola oil) blended and pure diesel fuel. As a results, the combustion pressure was decreased with increasing biodiesel blended rate when engine speed was 1,000, 1,500, 2000(rpm). but the combustion pressure of the engine speed 2,500rpm was increased with increasing biodiesel blended rate. The emission results show, that CO was decreased with increasing biodiesel blended rate and engine speed. The emission of $CO_2$, NOx, were increased with increasing biodiesel blended rate and engine speed.

A Numerical Study on the Effects of Maneuverability of Ship with Low Forward Speed by Increasing Rudder Force (타력 증대가 저속 운항 선박의 조종성능에 미치는 영향에 관한 수치적 연구)

  • Kim, Hyun-Jun;Kim, Sang-Hyun;Kim, Dong-Young;Kim, In-Tae;Han, Ji-Soo
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.53 no.3
    • /
    • pp.217-227
    • /
    • 2016
  • Recent accidents of crude oil tankers have resulted in sinking, grounding of vessels and significant levels of marine pollution. Therefore, International Maritime Organization (IMO) has been strengthening the regulations of ship maneuvering performance in MSC 137. The evaluation of maneuvering performance can be made at the early design stage; it can be investigated numerically or experimentally. The main objective of this paper was to investigate the maneuvering performance of a VLCC due to the increase of rudder force at an early design stage for low speed in shallow water conditions. It was simulated in various operating condition such as deep sea, shallow water, design speed and low speed by using the numerical maneuvering simulation model, developed using MMG maneuvering motion equation and KVLCC 2 (SIMMAN 2008 workshop). The effect of increasing the rudder force can be evaluated by using numerical simulation of turning test and ZIG-ZAG test. The research showed that, increasing the rudder force of a VLCC was more effective on improving the turning ability than improving the course changing ability especially. The improvement of turning ability by the rudder force increasing is most effective when the ship is sailing in shallow water at low forward speed.

Effect of Welding Condition on Microstructure of Transient Zone in Overlay Weld of 3Cr-1Mo Steel/STS-309L (3Cr-1Mo강/STS-309L 오버레이 용접부의 천이영역 조직에 미치는 용접조건의 영향)

  • 김동진;김병훈;지병하;김정태;김성곤;강정윤;박화순
    • Journal of Welding and Joining
    • /
    • v.18 no.2
    • /
    • pp.176-176
    • /
    • 2000
  • Recently developed Austenite stainless steel,309L was to overlay on 3Cr-1Mo-V-Ti-B steels, using Electroslag welding process, which wide electrodes were adopted. Transition region in welding interlayer relating to disbonding crack was investigated. Also. the effect of welding condition on the width of transition region and coarsening grains of the austenite were studied.1) With increasing welding speed the width of martensite at transient region was increased, but the amount of delta ferrite in weld metal was reduced, being fine grained.2) The form of martensite at the transition region was occured by reversible transition region, leading to increasing Ms point.3) With increasing welding speed, the grain of austenite formed at the welding interface was finer. With increasing welding current under the same welding speed, the grain size of the austenite was finer. At high current, original grain size of the austenite is coarse, but the austenite has fine grains because the austenite was transformed to martensite during cooling.4) In the case of high welding speed, the width of martensite at the welding interface was increased, but the grain size of austenite at the welding interface was finer. This indicates that the inhibition of disbonding crack may be achieved through dispersening fine carbides in the grain boudary.(Received August 3, 1999)

Effect of Welding Condition on Microstructure of Transient Zone in Overlay Weld of 3Cr-1Mo Steel/STS-309L (3Cr-1Mo강/STS-309L 오버레이 용접부의 천이영역 조직에 미치는 용접조건의 영향)

  • 김동진;김병훈;지병하;김정태;김성곤;강정윤;박화순
    • Journal of Welding and Joining
    • /
    • v.18 no.2
    • /
    • pp.49-56
    • /
    • 2000
  • Recently developed Austenite stainless steel, 309L was used to overlay on 3Cr-1Mo-V-Ti-B steels, using Electroslag welding process, which wide electrodes were adopted. Transition region in welding interlayer relating to disbonding crack was investigated. Also, the effect of welding condition on the width of transition region and coarsening grains of the austenite were studied. 1) With increasing welding speed the width of martensite at transient region was increased, but the amount of delta ferrite in weld metal was reduced, being fine grained. 2) The form of martensite at the transition region was occurred by reversible transformation during cooling since the interdiffusion of Cr and Ni from weld metal and Fe and C from base metals at the transition region, causes to lowering the concentration of Cr and Ni at the transition region, leading to increasing Ms point. 3) With increasing welding speed, the grain of austenite formed at the welding interface was finer. With increasing welding current under the same welding speed, the grain size of the austenite was finer. At high current, original grain size of the austenite is coarse, but the austenite has fine grains because the austenite was transformed to martensite during cooling. 4) In the case of high welding speed, the width of martensite at the welding interface was increased, but the grain size of austenite at the welding interface was finer. This indicates that the inhibition of disbonding crack may be achieved through dispersening fine carbides in the gain boundary.

  • PDF

Effects of Angular Acceleration on the Friction and Wear Characteristics of Gas Foil Thrust Bearings (회전각가속도가 가스 포일 스러스트 베어링의 마찰 및 마모 특성에 미치는 영향)

  • Sung Ho Hwang;Dae Yeon Kim;Tae Ho Kim
    • Tribology and Lubricants
    • /
    • v.39 no.5
    • /
    • pp.203-211
    • /
    • 2023
  • This study experimentally investigates the effects of angular acceleration on the friction and wear performances of a gas foil thrust bearing (GFTB) using a typical GFTB with six pads. The outer radius of the bearing is 31.5 mm, the total bearing area is 2,041 mm2 , and the bump foil and incline (ramp) height are both 500 ㎛. The newly developed GFTB test rig for measuring the friction torque and coefficient measures the axial load, drag torque, lift-off speed, and touch-down speed. The experiment is conducted for angular accelerations of 78.5, 314.2, and 328.3 rad/s2 at axial loads of 5, 10, and 15 N, respectively. The test shows that the start-up friction coefficient increases with increasing axial load at the same angular acceleration, and the friction coefficient decreases with increasing angular acceleration under the same axial load. As the angular acceleration increases, the lift-off speed at the motor start-up increases, and the touch-down speed at the motor stop decreases. The wear distance of the GFTB for a single on/off cycle increases with increasing axial load at the same angular acceleration and decreases nonlinearly with increasing angular acceleration under the same axial load. The test results suggest that adjusting the rotational angular acceleration helps reduce bearing friction and wear.