• Title/Summary/Keyword: Speed Control of Diesel Engine

Search Result 126, Processing Time 0.03 seconds

Robust Decoupling Control of Ship Propulsion System with CPP (CPP를 갖는 선박 추진 시스템의 강인한 Decoupling 제어)

  • 김영복;변정환
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.9
    • /
    • pp.33-42
    • /
    • 1998
  • If a ship diesel engine is operated by consolidated control with Controllable Pitch Propeller(CPP), the minimum fuel consumption is achieved together with the demanded ship speed. For this, it is necessary that the ship is operated on the ideal operating line which satisfies the minimum fuel consumption and that the pitch angle of CPP and throtle valve angle are controlled simultaneously. In this point of view, this paper presents a controller design method for a ship propulsion system with CPP based on the decoupling control theory. To do this, Linear Matrix Inequality(LMI) approach is introduced for the control system to satisfy the given $H_\infty$ control performance and robust stability in the presence of physical parameter perturbations. The validity and applicability of this approach are illustrated by simulation in the all operating ranges.

  • PDF

Cycle Simulation for the Performance Prediction of a High Pressure Unit Injection System of a Diesel Engine (디젤엔진용 고압분사 유닛인젝터의 성능예측을 위한 사이클 시뮬레이션)

  • 김철호
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.1
    • /
    • pp.63-74
    • /
    • 2001
  • In this study, a cycle simulation program of a Unit-Injection(UI) system was developed to estimate the injection performance of newly designed injection system. A fundamental theory of the simulation program is based on the conservation law of mass. Loss of fuel mass in the system due to leakage, compressibility effect of the liquid fuel and friction loss in the control volume was considered in the algorithm f the program. For the evaluation of the simulation program developed, the experimental result which was offered by the Technical Research Center of Doowon Precision Industry Co. was incorporated. Two main parameters; the maximum pressure in the plunger chamber and total fuel mass(kg) injected into the engine cylinder per cycle, were measured and compared with the simulation results. It was found that the maximum error rate of the simulation result to the experimental output was less than 3% in the rated rotational speed (rpm) range of the plunger cam.

  • PDF

A Study on the Voltage Compensation Converter to decrease fuel consumption of RTGC (RTGC의 연료절감을 위한 전압 보상 컨버터에 관한 연구)

  • Bayasgalan, Bayasgalan;Ryu, Ji-Su;Han, Dong-Hwa;Lee, Young-Jin;Lee, Sang-Ho;Choe, Gyu-Ha
    • Proceedings of the KIPE Conference
    • /
    • 2011.07a
    • /
    • pp.280-282
    • /
    • 2011
  • This paper presents a development of voltage compensation dc/dc converter to decrease fuel consumption of RTGC system. We used 3-phase interleaved converter, which has the same structure as the commercially available three-phase inverter, is used. RTGC system is supplied the power from diesel-engine generator. According to power demand, engine speed is varying 20~60Hz, and voltage is varying 210Vac ~ 480Vac. When idle mode or low power operation dc/dc converter operates by constant output voltage control. The perpormance of converter is evaluated through several experiments with a real RTGC. Proposed system can cut down fuel consumption by 36% at idle mode operation.

  • PDF

A Development of Forklift Shift and Constant Speed Endurance Test Controller for Dynamometer Test (다이나모 시험용 지게차 변속 및 정속 내구시험 제어기 개발)

  • Jung, G.H.;Lee, G.H.
    • Transactions of The Korea Fluid Power Systems Society
    • /
    • v.4 no.3
    • /
    • pp.13-21
    • /
    • 2007
  • A forklift is a motive machine powered by LPG, diesel engine or electric motors. The internal combustion engine type forklift is equipped with automatic transmission to meet the required drive load as well as the easy operation of the vehicle. This paper deals with the shift control and endurance test controller which is developed for the functional test of the newly designed automatic transmission on a dynamometer test bench. Its major function is to control the proportional solenoid currents, which is directly related to clutch pressures, for the given reference current trajectory during shift and sequential operation of shift schedule designed for the durability test at each gear. It also has the ability to monitor all the necessary test data through RS232 communication and log them to disk files. The current controller of embedded system is designed from the identified dynamics of solenoid coil and the current reference can be easily modified with a user interface software on PC so as to match the shift data by experiments.

  • PDF

Communication Method for Torque Control of Commercial Diesel Engine in Range-Extended Electric Trash Truck (주행거리 연장형 청소용 전기자동차에 장착된 상용 디젤엔진의 토크제어를 위한 통신 방안)

  • Park, Young-Kug
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.7
    • /
    • pp.1-8
    • /
    • 2018
  • This paper describes new communication methods for transmitting torque commands between the vehicle controller that determines the amount of power generation in a range-extended electric vehicle and the engine controller that performs it. Generally, vehicles use CAN communication, but in this case, the hardware and software of the existing engine controller must be modified. For this reason, it is not easy to apply CAN communication to small and medium sized automotive reorganize companies. Therefore, this research presents a pin-pin communication method for applying the existing mass produced engine controller to range-extended electric vehicles. The pin-pin communication method converts the driver's demand torque control map inside an mass produced engine controller into a virtual accelerator opening position according to the target speed and target torque of the engine, and converts this to a voltage signal for the existing mass produced engine controller to recognize it. The virtual accelerator opening positions are mounted in the form of a control map in the vehicle controller through the reverse conversion process in an offline environment and are determined by the engine generating power requirements and engine optimal operating point algorithm. These algorithms and signal conversion circuits for engine torque transmission have been mounted on the vehicle controller to conduct the virtual accelerator opening position conversion process according to the engine target torque and to establish the virtual accelerator voltage signal using the signal converter.

Optimal residual generation using parity space approach for a position servo system (패리티 공간기법을 이용한 위치 서보계의 최적 잔차 발생)

  • 최경영;박태건;이기상
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.1440-1443
    • /
    • 1997
  • The optimal residual generator based on parity relation approach for the fault detection and isolation of a arge diesel engine actuator position servo system is presented. The closed-loop residual generator is designed to have robustness against modeling errors and noise. Main purpose of the fault detection and isolation system in the process is to detect and isolate two important faults, i.e., actuatro fault and fault of speed sensor, that, if not detected and compensated, degrade the overall control system performance. Simulation results are give to show the practical applicability of the fault detecrtion and isloation scherme.

  • PDF

Numerical Study of Breakup Process of Diesel Spray (디젤분무의 분열과정에 대한 수치해석 연구)

  • Yeom, Jeong Kuk;Jung, Woo Sung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.12
    • /
    • pp.1489-1495
    • /
    • 2013
  • High-pressure flows are ubiquitous in many industrial fields. A representative application is fuel injection using a common-rail control system in diesel engines, where the injection pressure in the injector exceeds 1000 bar. In high-speed injection, the fluid injected through the nozzle undergoes breakup owing to the interaction with the ambient gas. The breakup process influences mixture formation, which in turn influences combustion in diesel engines. Therefore, it is very important to analyze the breakup process of fuel spray. The Reitz and Diwakar model and cascade atomization and breakup (CAB) model were used in this study as sub-models for the numerical analysis of the breakup process of fuel spray. This study aims to precisely analyze the breakup process of spray and to investigate the breakup frequency of the injected fuel. Consequently, it proposes a suitable sub-model for analyzing the breakup process of a diesel spray by using CFX, a commercial CFD program.

The Behavior of Impinging Spray by Piston Cavity Geometry (PistonCavity 형상에 따른 충돌분류의 분무거동)

  • 이상석;김근민;김봉곤;정성식;하종률
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.4 no.3
    • /
    • pp.211-219
    • /
    • 1996
  • In a small high-speed D. I. diesel engine, the injected fuel spray into the atmosphere of the high temperature is burnt by go through the process of break up, atomization, evaporation and process of ignition. These process are important to decide the emission control and the rate of fuel consumption and out put of power. Especially, in the case of injected fuel spray impinging on the wall of piston cavity, the geometry of piston cavity gives great influence the ignitability of injected fuel and the flame structure. Ordinary, the combustion chamber of driving engine have unsteady turbulent flow be attendant on such as the change of temperature, velocity and pressure. So the analysis of spray behavior is difficult. In this study, the spray was impinged on the wall of 3 types of piston cavity such as Dish, Toroidal, Re-entrant type, in order to analyze the combustion process of impinging spray precisely and systematically. And hot wire probe was used for analyze non-steady flow characteristics of impinging spray, and to investigate the behavior of spray, the aspects of concentration c(t), standard deviation σ(t) and variation factor(vf) was measured with the lapse of time.

  • PDF

Speed Control of a Diesel Engine Generator by a Electric Governor (전기식 조속기를 이용한 디젤 엔진 발전기의 속도 제어)

  • Lee, Seung-Hwan;Lee, Joon-Hwan;Sul, Seung-Ki
    • Proceedings of the KIPE Conference
    • /
    • 2008.06a
    • /
    • pp.452-454
    • /
    • 2008
  • 본 논문에서는 실험적으로 구한 엔진 토크 참조 표를 이용하여 엔진의 비선형 모델을 구하고 이를 각각의 운전 점에 대해 선형화한 엔진 모델을 제시하였다. 이러한 선형화된 엔진 모델을 이용하여, 전기식 조속기를 사용한 디젤 엔진의 속도 제어에 있어 발생하는 안정성 문제를 해석하였다. 제시한 디젤 엔진 모델을 이용하여 속도제어기의 비례, 적분 미분 이득을 설정하고 이 값을 바탕으로 모의실험 및 실험을 통하여 제시한 모델의 타당성을 검증 하였다.

  • PDF

A Study of wear and Matching of Diesel Engine Exhaust Valve and Seat Insert Depending on Valve Materials (디젤엔진 배기밸브와 시트 인서트의 밸브 재질에 따른 마모 및 매칭성 연구)

  • Kim, Yang-Soo;Chun, Keyoung-Jin;Hong, Jae-Soo;Chung, Dong-Teak
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.6
    • /
    • pp.108-115
    • /
    • 2008
  • The wear on engine valve and seat insert is one of the most important factors affecting engine performance. The engine valve and seat insert must be able to withstand the severe environment that is created by: high temperature exhaust gases generated while the engine is running, rapid movement of the valve spring, high pressure generated in the explosive process. In order to study such problems, a simulator has been developed to generate and control high temperatures and various speeds during motion. The wear simulator is considered to be a valid simulation of the engine valve and seat insert wear process with various speeds during engine activity. This work focused on the test of various degrees of wear on four different exhaust valve materials such as HRV40, HRV40-FNV (face nitrided valve), STL #32, STL #6,. Throughout all tests performed in this study, the outer surface temperature of the seat insert was controlled at $350^{\circ}C$, the cycle number was $4.0{\times}10^6$, the test load was 6860 N, the fuel was LPG the test speed was 20 Hz (2400 RPM) and the seat insert material was HVS1-2. The mean (standard deviation) maximum roughness of the exhaust valve and seat insert was $25.44\;(3.16)\;{\mu}m$ and $27.53\;(3.60)\;{\mu}m$ at the HRV40, $21.58\;(2.38)\;{\mu}m$ and $25.94\;(3.07)\;{\mu}m$ at the HRV40-FNV, $36.73\;(8.98)\;{\mu}m$ and $61.38\;(7.84)\;{\mu}m$ at the STL #32, $73.64\;(23.80)\;{\mu}m$ and $60.80\;(13.49)\;{\mu}m$ at the STL #6, respectively. It was discovered that the maximum roughness of exhaust valve was lower as the high temperature hardness of the valve material was higher under the same test conditions such as temperature, test speed, cycle number, test load and seat insert material. The set of the HRV40-FNV exhaust valve and the HVS1-2 seat insert showed the best wear resistance.