• Title/Summary/Keyword: Speech feature

Search Result 712, Processing Time 0.022 seconds

A Study on the Optimal Mahalanobis Distance for Speech Recognition

  • Lee, Chang-Young
    • Speech Sciences
    • /
    • v.13 no.4
    • /
    • pp.177-186
    • /
    • 2006
  • In an effort to enhance the quality of feature vector classification and thereby reduce the recognition error rate of the speaker-independent speech recognition, we employ the Mahalanobis distance in the calculation of the similarity measure between feature vectors. It is assumed that the metric matrix of the Mahalanobis distance be diagonal for the sake of cost reduction in memory and time of calculation. We propose that the diagonal elements be given in terms of the variations of the feature vector components. Geometrically, this prescription tends to redistribute the set of data in the shape of a hypersphere in the feature vector space. The idea is applied to the speech recognition by hidden Markov model with fuzzy vector quantization. The result shows that the recognition is improved by an appropriate choice of the relevant adjustable parameter. The Viterbi score difference of the two winners in the recognition test shows that the general behavior is in accord with that of the recognition error rate.

  • PDF

Emotion Recognition and Expression Method using Bi-Modal Sensor Fusion Algorithm (다중 센서 융합 알고리즘을 이용한 감정인식 및 표현기법)

  • Joo, Jong-Tae;Jang, In-Hun;Yang, Hyun-Chang;Sim, Kwee-Bo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.8
    • /
    • pp.754-759
    • /
    • 2007
  • In this paper, we proposed the Bi-Modal Sensor Fusion Algorithm which is the emotional recognition method that be able to classify 4 emotions (Happy, Sad, Angry, Surprise) by using facial image and speech signal together. We extract the feature vectors from speech signal using acoustic feature without language feature and classify emotional pattern using Neural-Network. We also make the feature selection of mouth, eyes and eyebrows from facial image. and extracted feature vectors that apply to Principal Component Analysis(PCA) remakes low dimension feature vector. So we proposed method to fused into result value of emotion recognition by using facial image and speech.

Incorporation of IMM-based Feature Compensation and Uncertainty Decoding (IMM 기반 특징 보상 기법과 불확실성 디코딩의 결합)

  • Kang, Shin-Jae;Han, Chang-Woo;Kwon, Ki-Soo;Kim, Nam-Soo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.6C
    • /
    • pp.492-496
    • /
    • 2012
  • This paper presents a decoding technique for speech recognition using uncertainty information from feature compensation method to improve the speech recognition performance in the low SNR condition. Traditional feature compensation algorithms have difficulty in estimating clean feature parameters in adverse environment. Those algorithms focus on the point estimation of desired features. The point estimation of feature compensation method degrades speech recognition performance when incorrectly estimated features enter into the decoder of speech recognition. In this paper, we apply the uncertainty information from well-known feature compensation method, such as IMM, to the recognition engine. Applied technique shows better performance in the Aurora-2 DB.

Filtering of Filter-Bank Energies for Robust Speech Recognition

  • Jung, Ho-Young
    • ETRI Journal
    • /
    • v.26 no.3
    • /
    • pp.273-276
    • /
    • 2004
  • We propose a novel feature processing technique which can provide a cepstral liftering effect in the log-spectral domain. Cepstral liftering aims at the equalization of variance of cepstral coefficients for the distance-based speech recognizer, and as a result, provides the robustness for additive noise and speaker variability. However, in the popular hidden Markov model based framework, cepstral liftering has no effect in recognition performance. We derive a filtering method in log-spectral domain corresponding to the cepstral liftering. The proposed method performs a high-pass filtering based on the decorrelation of filter-bank energies. We show that in noisy speech recognition, the proposed method reduces the error rate by 52.7% to conventional feature.

  • PDF

On Wavelet Transform Based Feature Extraction for Speech Recognition Application

  • Kim, Jae-Gil
    • The Journal of the Acoustical Society of Korea
    • /
    • v.17 no.2E
    • /
    • pp.31-37
    • /
    • 1998
  • This paper proposes a feature extraction method using wavelet transform for speech recognition. Speech recognition system generally carries out the recognition task based on speech features which are usually obtained via time-frequency representations such as Short-Time Fourier Transform (STFT) and Linear Predictive Coding(LPC). In some respects these methods may not be suitable for representing highly complex speech characteristics. They map the speech features with same may not frequency resolutions at all frequencies. Wavelet transform overcomes some of these limitations. Wavelet transform captures signal with fine time resolutions at high frequencies and fine frequency resolutions at low frequencies, which may present a significant advantage when analyzing highly localized speech events. Based on this motivation, this paper investigates the effectiveness of wavelet transform for feature extraction of wavelet transform for feature extraction focused on enhancing speech recognition. The proposed method is implemented using Sampled Continuous Wavelet Transform (SCWT) and its performance is tested on a speaker-independent isolated word recognizer that discerns 50 Korean words. In particular, the effect of mother wavelet employed and number of voices per octave on the performance of proposed method is investigated. Also the influence on the size of mother wavelet on the performance of proposed method is discussed. Throughout the experiments, the performance of proposed method is discussed. Throughout the experiments, the performance of proposed method is compared with the most prevalent conventional method, MFCC (Mel0frequency Cepstral Coefficient). The experiments show that the recognition performance of the proposed method is better than that of MFCC. But the improvement is marginal while, due to the dimensionality increase, the computational loads of proposed method is substantially greater than that of MFCC.

  • PDF

Analysis of the Time Delayed Effect for Speech Feature (음성 특징에 대한 시간 지연 효과 분석)

  • Ahn, Young-Mok
    • The Journal of the Acoustical Society of Korea
    • /
    • v.16 no.1
    • /
    • pp.100-103
    • /
    • 1997
  • In this paper, we analyze the time delayed effect of speech feature. Here, the time delayed effect means that the current feature vector of speech is under the influence of the previous feature vectors. In this paper, we use a set of LPC driven cepstal coefficients and evaluate the time delayed effect of cepstrum with the performance of the speech recognition system. For the experiments, we used the speech database consisting of 22 words which uttered by 50 male speakers. The speech database uttered by 25 male speakers was used for training, and the other set was used for testing. The experimental results show that the time delayed effect is large in the lower orders of feature vector but small in the higher orders.

  • PDF

Speech Query Recognition for Tamil Language Using Wavelet and Wavelet Packets

  • Iswarya, P.;Radha, V.
    • Journal of Information Processing Systems
    • /
    • v.13 no.5
    • /
    • pp.1135-1148
    • /
    • 2017
  • Speech recognition is one of the fascinating fields in the area of Computer science. Accuracy of speech recognition system may reduce due to the presence of noise present in speech signal. Therefore noise removal is an essential step in Automatic Speech Recognition (ASR) system and this paper proposes a new technique called combined thresholding for noise removal. Feature extraction is process of converting acoustic signal into most valuable set of parameters. This paper also concentrates on improving Mel Frequency Cepstral Coefficients (MFCC) features by introducing Discrete Wavelet Packet Transform (DWPT) in the place of Discrete Fourier Transformation (DFT) block to provide an efficient signal analysis. The feature vector is varied in size, for choosing the correct length of feature vector Self Organizing Map (SOM) is used. As a single classifier does not provide enough accuracy, so this research proposes an Ensemble Support Vector Machine (ESVM) classifier where the fixed length feature vector from SOM is given as input, termed as ESVM_SOM. The experimental results showed that the proposed methods provide better results than the existing methods.

Analysis of Feature Parameter Variation for Korean Digit Telephone Speech according to Channel Distortion and Recognition Experiment (한국어 숫자음 전화음성의 채널왜곡에 따른 특징파라미터의 변이 분석 및 인식실험)

  • Jung Sung-Yun;Son Jong-Mok;Kim Min-Sung;Bae Keun-Sung
    • MALSORI
    • /
    • no.43
    • /
    • pp.179-188
    • /
    • 2002
  • Improving the recognition performance of connected digit telephone speech still remains a problem to be solved. As a basic study for it, this paper analyzes the variation of feature parameters of Korean digit telephone speech according to channel distortion. As a feature parameter for analysis and recognition MFCC is used. To analyze the effect of telephone channel distortion depending on each call, MFCCs are first obtained from the connected digit telephone speech for each phoneme included in the Korean digit. Then CMN, RTCN, and RASTA are applied to the MFCC as channel compensation techniques. Using the feature parameters of MFCC, MFCC+CMN, MFCC+RTCN, and MFCC+RASTA, variances of phonemes are analyzed and recognition experiments are done for each case. Experimental results are discussed with our findings and discussions

  • PDF

Speech Feature Extraction for Isolated Word in Frequency Domain (주파수 영역에서의 고립단어에 대한 음성 특징 추출)

  • 조영훈;박은명;강홍석;박원배
    • Proceedings of the IEEK Conference
    • /
    • 2000.06d
    • /
    • pp.81-84
    • /
    • 2000
  • In this paper, a new technology for extracting the feature of the speech signal of an isolated word by the analysis on the frequency domain is proposed. This technology can be applied efficiently for the limited speech domain. In order to extract the feature of speech signal, the number of peaks is calculated and the value of the frequency for a peak is used. Then the difference between the maximum peak and the second peak is also considered to identify the meanings among the words in the limited domain. By implementing this process hierarchically, the feature of speech signal can be extracted more quickly.

  • PDF

A Comparison of Effective Feature Vectors for Speech Emotion Recognition (음성신호기반의 감정인식의 특징 벡터 비교)

  • Shin, Bo-Ra;Lee, Soek-Pil
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.10
    • /
    • pp.1364-1369
    • /
    • 2018
  • Speech emotion recognition, which aims to classify speaker's emotional states through speech signals, is one of the essential tasks for making Human-machine interaction (HMI) more natural and realistic. Voice expressions are one of the main information channels in interpersonal communication. However, existing speech emotion recognition technology has not achieved satisfactory performances, probably because of the lack of effective emotion-related features. This paper provides a survey on various features used for speech emotional recognition and discusses which features or which combinations of the features are valuable and meaningful for the emotional recognition classification. The main aim of this paper is to discuss and compare various approaches used for feature extraction and to propose a basis for extracting useful features in order to improve SER performance.