• 제목/요약/키워드: Speech Signal Segmentation

검색결과 28건 처리시간 0.025초

음성 신호의 음소 단위 구분화에 관한 연구 (A Study on the Segmentation of Speech Signal into Phonemic Units)

  • 이의천;이강성;김순협
    • 한국음향학회지
    • /
    • 제10권4호
    • /
    • pp.5-11
    • /
    • 1991
  • 본 연구에서는 음성신호의 음소 단위 구분화 방법을 제안한다. 제안된 구분화 시스템은 화자 독립적이고, 음성신호에 대한 사전 정보 없이도 음소 단위로 구분화를 수행할 수 있는 특징을 갖는다. 구분화 처리는 입력 음성신호를 먼저 순수 유성을 구간과 순수 유성음이 아닌 구간으로 분리 시킨 후, 각각의 구간에 대해 세분화된 음소 단위로 분리시키는 2단계 구분화 알고리즘을 적용하였고, 이때 사용된 파라미터는 유성을 검출 파라미터, 영차 LPC 캡스트럼 계수의 시간변호 파라미터, ZCR 파라미터이다. 본 연구에서 제안한 구분화 알고리즘의 유용성을 입증하기 위해 사용한 대상어는 고립단어와 연속음성으로 구성된 어휘로서 전체 어휘중에 포함된 507개 음소에 대한 구분화율은 91.7% 이다.

  • PDF

Application of Speech Recognition with Closed Caption for Content-Based Video Segmentations

  • Son, Jong-Mok;Bae, Keun-Sung
    • 음성과학
    • /
    • 제12권1호
    • /
    • pp.135-142
    • /
    • 2005
  • An important aspect of video indexing is the ability to segment video into meaningful segments, i.e., content-based video segmentation. Since the audio signal in the sound track is synchronized with image sequences in the video program, a speech signal in the sound track can be used to segment video into meaningful segments. In this paper, we propose a new approach to content-based video segmentation. This approach uses closed caption to construct a recognition network for speech recognition. Accurate time information for video segmentation is then obtained from the speech recognition process. For the video segmentation experiment for TV news programs, we made 56 video summaries successfully from 57 TV news stories. It demonstrates that the proposed scheme is very promising for content-based video segmentation.

  • PDF

A New Method for Segmenting Speech Signal by Frame Averaging Algorithm

  • Byambajav D.;Kang Chul-Ho
    • The Journal of the Acoustical Society of Korea
    • /
    • 제24권4E호
    • /
    • pp.128-131
    • /
    • 2005
  • A new algorithm for speech signal segmentation is proposed. This algorithm is based on finding successive similar frames belonging to a segment and represents it by an average spectrum. The speech signal is a slowly time varying signal in the sense that, when examined over a sufficiently short period of time (between 10 and 100 ms), its characteristics are fairly stationary. Generally this approach is based on finding these fairly stationary periods. Advantages of the. algorithm are accurate border decision of segments and simple computation. The automatic segmentations using frame averaging show as much as $82.20\%$ coincided with manually verified segmentation of CMU ARCTIC corpus within time range 16 ms. More than $90\%$ segment boundaries are coincided within a range of 32 ms. Also it can be combined with many types of automatic segmentations (HMM based, acoustic cues or feature based etc.).

Ramp Edge Detection을 이용한 끝점 검출과 음절 분할에 관한 연구 (A Study on Endpoint Detection and Syllable Segmentation System Using Ramp Edge Detection)

  • 유일수;홍광석
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2003년도 하계종합학술대회 논문집 Ⅳ
    • /
    • pp.2216-2219
    • /
    • 2003
  • Accurate speech region detection and automatic syllable segmentation is important part of speech recognition system. In automatic speech recognition system, they are needed for the purpose of accurate recognition and less computational complexity, In this paper, we Propose improved syllable segmentation method using ramp edge detection method and residual signal Peak energy. These methods were used to ensure accuracy and robustness for endpoint detection and syllable segmentation system. They have almost invariant response to various background noise levels. As experimental results, we obtained the rate of 90.7% accuracy in syllable segmentation in a condition of accurate endpoint detection environments.

  • PDF

음소 음향학적 변화 정보를 이용한 한국어 음성신호의 자동 음소 분할 (Automatic Phonetic Segmentation of Korean Speech Signal Using Phonetic-acoustic Transition Information)

  • 박창목;왕지남
    • 한국음향학회지
    • /
    • 제20권8호
    • /
    • pp.24-30
    • /
    • 2001
  • 본 논문에서는 발음표기가 주어진 상황에서 음성 신호의 자동 음소 분할에 관한 것이며 음소의 경계를 음소 음향학적인 변화특성에 따라 3가지 형태로 분류하여 각각에 적합한 분할 알고리즘을 개발하였다. 형태 1은 묵음·유성음·무성음간의 분할이며 히스토그램분석으로 구한 문턱 값으로 초기 분할 후, 웨이블릿 계수의 SVF (Spectral Variation Function)를 이용하여 분할하였다. 형태 2는 연속적인 모음의 분할이며 각 모음변화특성을 템플릿으로 구성하여 분할에 활용하였다. 형태 3은 모음과 유성자음 혹은 유성화 자음의 분할이며 특성주파수대역의 진폭변화를 이용하여 후보구간을 정한 후, 캡스트럼 계수의 SVF를 이용하여 최종적인 분할을 수행하였다. 본 실험에서는 분할 성능을 테스트하기 위하여 한국어 PBWSpeech DB에서 342개의 단어를 자동으로 분할한 후, 수작업으로 분할한 결과와 비교하였다. 전체적인 자동 분할 성능은 20 msec내에서 81.5%의 분할성능을 보였다.

  • PDF

한국어 음성 인식에서 변동성과 벌크 지표에 기반한 음소 경계 검출 (Phoneme Segmentation based on Volatility and Bulk Indicators in Korean Speech Recognition)

  • 이재원
    • 정보과학회 컴퓨팅의 실제 논문지
    • /
    • 제21권10호
    • /
    • pp.631-638
    • /
    • 2015
  • 최근 모바일 환경에서 작동 가능한 음성 인식 시스템에 대한 수요가 급격히 증대되고 있다. 본 논문은 음소 기반 한국어 음성 인식 시스템에 적용하기 위한 새로운 한국어 음소 경계 검출 방안을 제안한다. 먼저 입력 신호는 동일한 크기의 블록들을 구성한다. 제안하는 방식은 입력 음성 신호의 각 블록에 대해 계산되는 변동성 지표와, 부호가 동일한 인접 샘플들의 집합인, 블록 내의 각 벌크에 대해 계산되는 벌크 지표를 음소 경계 검출의 기반 지표로 사용한다. 두 가지 기반 지표를 결합하여 활용하는 세 개의 전용 인식 알고리즘을 사용하여, 모음, 유성 자음, 그리고 무성 자음을 차례로 인식하여 음소 간 경계를 검출한다. 실험 결과를 통해, 제안하는 방식을 사용함으로써 기존의 경계 검출 방식에 비해 오류율을 현저히 감소시킬 수 있음을 확인하였다.

GMM을 이용한 프레임 단위 분류에 의한 우리말 음성의 분할과 인식 (Korean Speech Segmentation and Recognition by Frame Classification via GMM)

  • 권호민;한학용;고시영;허강인
    • 융합신호처리학회 학술대회논문집
    • /
    • 한국신호처리시스템학회 2003년도 하계학술대회 논문집
    • /
    • pp.18-21
    • /
    • 2003
  • In general it has been considered to be the difficult problem that we divide continuous speech into short interval with having identical phoneme quality. In this paper we used Gaussian Mixture Model (GMM) related to probability density to divide speech into phonemes, an initial, medial, and final sound. From them we peformed continuous speech recognition. Decision boundary of phonemes is determined by algorithm with maximum frequency in a short interval. Recognition process is performed by Continuous Hidden Markov Model(CHMM), and we compared it with another phoneme divided by eye-measurement. For the experiments result we confirmed that the method we presented is relatively superior in auto-segmentation in korean speech.

  • PDF

프리엠퍼시스 FIR 필터링의 음성 검출 및 음소 분할에의 응용 (Application of Preemphasis FIR Filtering To Speech Detection and Phoneme Segmentation)

  • 이창영
    • 한국전자통신학회논문지
    • /
    • 제8권5호
    • /
    • pp.665-670
    • /
    • 2013
  • 이 논문에서 우리는 음성 검출 및 음소 분할에 대한 새로운 방법을 제안한다. 배경 잡음으로부터 신호를 구분하기 위해 에너지를 활용하게 되는데, 그 이전에 프리엠퍼시스 FIR 필터링을 적용하는 효과에 대해 조사한다. 이 방법에 의해, 에너지 프로필에서 진폭과 주파수의 곱이 동시에 작은 부분이 두드러지게 나타나게 된다. 이 처방에 의해, 묵음/음성 경계가 종전의 방법에 비해 더 선명해짐을 실험적으로 확인하였다. 또한 이 방법을 적용함으로써, 음소 분할 또한 더 수월해짐을 밝혔다.

내용기반 비디오 색인 및 검색을 위한 음성인식기술 이용에 관한 연구 (A Study on the Use of Speech Recognition Technology for Content-based Video Indexing and Retrieval)

  • 손종목;배건성;강경옥;김재곤
    • 한국음향학회지
    • /
    • 제20권2호
    • /
    • pp.16-20
    • /
    • 2001
  • 비디오 프로그램 색인 및 검색에 있어서 비디오 프로그램을 의미 있는 부분으로 분할하는 것, 즉 내용기반 비디오 프로그램 분할은 중요하다. 본 논문에서는 내용기반 비디오 프로그램 분할을 위해 음성인식기술을 이용하는 새로운 방법을 제안한다. 제안한 방법은 음성신호와 캡션 (Closed Caption)의 정확한 동기를 위해 음성인식 기법을 사용한다. 실험을 통하여 내용기반 비디오 프로그램 분할을 위해 제안한 방법의 가능성을 확인하였다.

  • PDF

모음 인식과 벡터 양자화를 이용한 화자 인식 (Speaker Identification Based on Vowel Classification and Vector Quantization)

  • 임창헌;이황수;은종관
    • 한국음향학회지
    • /
    • 제8권4호
    • /
    • pp.65-73
    • /
    • 1989
  • 본 연구에서는, VQ(vector quantization)와 모음 인식에 기초한 화자 인식 알고리즘을 제안하고, 기존의 VQ를 사용한 화자 인식 알고리즘과 성능을 비교하였다. 제안된 화자 인식 알고리즘은 모음 분리, 모음 인식 그리고 평균 distortion양을 계산하는 3개의 과정으로 구성되며, 이때 주어진 음성 신호로부터 모음 부분을 분리하기 위해 RMS 에너지, BTR(Back-to-Total cavity volume Ratio) 그리고 SFBR(Signed-Front-to-Back maximum area Ratio)이 라는 3개 의 Parameter를 사용하였다. 입력 음성 신호의 SNR이 20 dB이고 정확한 모음 분리가 수행되었을 때, 제안된 화자 인식 알고리즘의 성능이 기존의VQ를 사용한 화자 인식 알고리즘의 성능보다 대체로 좋았으며, 입력 신호가 전화선을 통과한 신호이고 잡음이 있는 경우에도 유사한 결과를 얻을 수 있었다

  • PDF