• Title/Summary/Keyword: Speech Feature Extraction

Search Result 155, Processing Time 0.024 seconds

Intra-and Inter-frame Features for Automatic Speech Recognition

  • Lee, Sung Joo;Kang, Byung Ok;Chung, Hoon;Lee, Yunkeun
    • ETRI Journal
    • /
    • v.36 no.3
    • /
    • pp.514-517
    • /
    • 2014
  • In this paper, alternative dynamic features for speech recognition are proposed. The goal of this work is to improve speech recognition accuracy by deriving the representation of distinctive dynamic characteristics from a speech spectrum. This work was inspired by two temporal dynamics of a speech signal. One is the highly non-stationary nature of speech, and the other is the inter-frame change of a speech spectrum. We adopt the use of a sub-frame spectrum analyzer to capture very rapid spectral changes within a speech analysis frame. In addition, we attempt to measure spectral fluctuations of a more complex manner as opposed to traditional dynamic features such as delta or double-delta. To evaluate the proposed features, speech recognition tests over smartphone environments were conducted. The experimental results show that the feature streams simply combined with the proposed features are effective for an improvement in the recognition accuracy of a hidden Markov model-based speech recognizer.

Performance Improvement of Speech Recognition Based on Independent Component Analysis (독립성분분석법을 이용한 음성인식기의 성능향상)

  • 김창근;한학용;허강인
    • Proceedings of the Korea Institute of Convergence Signal Processing
    • /
    • 2001.06a
    • /
    • pp.285-288
    • /
    • 2001
  • In this paper, we proposed new method of speech feature extraction using ICA(Independent Component Analysis) which minimized the dependency and correlation among speech signals on purpose to separate each component in the speech signal. ICA removes the repeating of data after finding the axis direction which has the greatest variance in input dimension. We verified improvement of speech recognition ability with training and recognition experiments when ICA compared with conventional mel-cepstrum features using HMM. Also, we can see that ICA dealt with the situation of recognition ability decline that is caused by environmental noise.

  • PDF

A study on the recognition performance of connected digit telephone speech for MFCC feature parameters obtained from the filter bank adapted to training speech database (훈련음성 데이터에 적응시킨 필터뱅크 기반의 MFCC 특징파라미터를 이용한 전화음성 연속숫자음의 인식성능 향상에 관한 연구)

  • Jung Sung Yun;Kim Min Sung;Son Jong Mok;Bae Keun Sung;Kang Jeom Ja
    • Proceedings of the KSPS conference
    • /
    • 2003.05a
    • /
    • pp.119-122
    • /
    • 2003
  • In general, triangular shape filters are used in the filter bank when we get the MFCCs from the spectrum of speech signal. In [1], a new feature extraction approach is proposed, which uses specific filter shapes in the filter bank that are obtained from the spectrum of training speech data. In this approach, principal component analysis technique is applied to the spectrum of the training data to get the filter coefficients. In this paper, we carry out speech recognition experiments, using the new approach given in [1], for a large amount of telephone speech data, that is, the telephone speech database of Korean connected digit released by SITEC. Experimental results are discussed with our findings.

  • PDF

An Analysis Method of Strange Attractor for the Feature Extraction (음성 특징 추출을 위한 스트레인지 어트랙터의 분석 방법)

  • Kim, Tae-Sik
    • Speech Sciences
    • /
    • v.9 no.2
    • /
    • pp.147-155
    • /
    • 2002
  • In the area of speech processing, raw signals used to be presented into 2D format. However, such kind of presentation methods have limitation to extract characteristics from the signal because of the presentation method. Generally, not much information can be detected from the 2D signal. Strange attractor in the field of chaos theory provides a 3D presentation method. In the area of recognition problem, signal presentation method is very important because good features can be detected from a good presentation. This paper discusses a new feature extraction method that extracts features from a cycle of the strange attractor. A neural network is used to check whether the method extracts suitable features or not. The result shows very good points that can be applied to some areas of signal processing.

  • PDF

An Improvement of Korean Speech Recognition Using a Compensation of the Speaking Rate by the Ratio of a Vowel length (모음길이 비율에 따른 발화속도 보상을 이용한 한국어 음성인식 성능향상)

  • 박준배;김태준;최성용;이정현
    • Proceedings of the IEEK Conference
    • /
    • 2003.11b
    • /
    • pp.195-198
    • /
    • 2003
  • The accuracy of automatic speech recognition system depends on the presence of background noise and speaker variability such as sex, intonation of speech, and speaking rate. Specially, the speaking rate of both inter-speaker and intra-speaker is a serious cause of mis-recognition. In this paper, we propose the compensation method of the speaking rate by the ratio of each vowel's length in a phrase. First the number of feature vectors in a phrase is estimated by the information of speaking rate. Second, the estimated number of feature vectors is assigned to each syllable of the phrase according to the ratio of its vowel length. Finally, the process of feature vector extraction is operated by the number that assigned to each syllable in the phrase. As a result the accuracy of automatic speech recognition was improved using the proposed compensation method of the speaking rate.

  • PDF

Vector Quantization based Speech Recognition Performance Improvement using Maximum Log Likelihood in Gaussian Distribution (가우시안 분포에서 Maximum Log Likelihood를 이용한 벡터 양자화 기반 음성 인식 성능 향상)

  • Chung, Kyungyong;Oh, SangYeob
    • Journal of Digital Convergence
    • /
    • v.16 no.11
    • /
    • pp.335-340
    • /
    • 2018
  • Commercialized speech recognition systems that have an accuracy recognition rates are used a learning model from a type of speaker dependent isolated data. However, it has a problem that shows a decrease in the speech recognition performance according to the quantity of data in noise environments. In this paper, we proposed the vector quantization based speech recognition performance improvement using maximum log likelihood in Gaussian distribution. The proposed method is the best learning model configuration method for increasing the accuracy of speech recognition for similar speech using the vector quantization and Maximum Log Likelihood with speech characteristic extraction method. It is used a method of extracting a speech feature based on the hidden markov model. It can improve the accuracy of inaccurate speech model for speech models been produced at the existing system with the use of the proposed system may constitute a robust model for speech recognition. The proposed method shows the improved recognition accuracy in a speech recognition system.

A Study on MLP Neural Network Architecture and Feature Extraction for Korean Syllable Recognition (한국어 음절 인식을 위한 MLP 신경망 구조 및 특징 추출에 관한 연구)

  • 금지수;이현수
    • Proceedings of the IEEK Conference
    • /
    • 1999.11a
    • /
    • pp.672-675
    • /
    • 1999
  • In this paper, we propose a MLP neural network architecture and feature extraction for Korean syllable recognition. In the proposed syllable recognition system, firstly onset is classified by onset classification neural network. And the results information of onset classification neural network are used for feature selection of imput patterns vector. The feature extraction of Korean syllables is based on sonority. Using the threshold rate separate the syllable. The results of separation are used for feature of onset. nucleus and coda. ETRI's SAMDORI has been used by speech DB. The recognition rate is 96% in the speaker dependent and 93.3% in the speaker independent.

  • PDF

A Study on the Diphone Recognition of Korean Connected Words and Eojeol Reconstruction (한국어 연결단어의 이음소 인식과 어절 형성에 관한 연구)

  • ;Jeong, Hong
    • The Journal of the Acoustical Society of Korea
    • /
    • v.14 no.4
    • /
    • pp.46-63
    • /
    • 1995
  • This thesis described an unlimited vocabulary connected speech recognition system using Time Delay Neural Network(TDNN). The recognition unit is the diphone unit which includes the transition section of two phonemes, and the number of diphone unit is 329. The recognition processing of korean connected speech is composed by three part; the feature extraction section of the input speech signal, the diphone recognition processing and post-processing. In the feature extraction section, the extraction of diphone interval in input speech signal is carried and then the feature vectors of 16th filter-bank coefficients are calculated for each frame in the diphone interval. The diphone recognition processing is comprised by the three stage hierachical structure and is carried using 30 Time Delay Neural Networks. particularly, the structure of TDNN is changed so as to increase the recognition rate. The post-processing section, mis-recognized diphone strings are corrected using the probability of phoneme transition and the probability o phoneme confusion and then the eojeols (Korean word or phrase) are formed by combining the recognized diphones.

  • PDF

Spectral Normalization for Speaker-Invariant Feature Extraction (화자 불변 특징추출을 위한 스펙트럼 정규화)

  • 오광철
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • 1993.06a
    • /
    • pp.238-241
    • /
    • 1993
  • We present a new method to normalize spectral variations of different speakers based on physiological studies of hearing. The proposed method uses the cochlear frequency map to warp the input speech spectra by interpolation or decimation. Using this normalization method, we can obtain much improved recognition results for speaker independent speech recognition.

  • PDF

Telephone Speech Recognition with Data-Driven Selective Temporal Filtering based on Principal Component Analysis

  • Jung Sun Gyun;Son Jong Mok;Bae Keun Sung
    • Proceedings of the IEEK Conference
    • /
    • 2004.08c
    • /
    • pp.764-767
    • /
    • 2004
  • The performance of a speech recognition system is generally degraded in telephone environment because of distortions caused by background noise and various channel characteristics. In this paper, data-driven temporal filters are investigated to improve the performance of a specific recognition task such as telephone speech. Three different temporal filtering methods are presented with recognition results for Korean connected-digit telephone speech. Filter coefficients are derived from the cepstral domain feature vectors using the principal component analysis.

  • PDF