• Title/Summary/Keyword: Spectrum response

Search Result 1,239, Processing Time 0.026 seconds

A Shape of the Response Spectrum for Evaluation of the Ultimate Seismic Capacity of Structures and Equipment including High-frequency Earthquake Characteristics (구조물 및 기기의 한계성능 평가를 위한 고진동수 지진 특성을 반영한 응답스펙트럼 형상)

  • Eem, Seung-Hyun;Choi, In-Kil
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.24 no.1
    • /
    • pp.1-8
    • /
    • 2020
  • In 2016, an earthquake occurred at Gyeongju, Korea. At the Wolsong site, the observed peak ground acceleration was lower than the operating basis earthquake (OBE) level of Wolsong nuclear power plant. However, the measured spectral acceleration value exceeded the spectral acceleration of the operating-basis earthquake (OBE) level in some sections of the response spectrum, resulting in a manual shutdown of the nuclear power plant. Analysis of the response spectra shape of the Gyeongju earthquake motion showed that the high-frequency components are stronger than the response spectra shape used in nuclear power plant design. Therefore, the seismic performance evaluation of structures and equipment of nuclear power plants should be made to reflect the characteristics of site-specific earthquakes. In general, the floor response spectrum shape at the installation site or the generalized response spectrum shape is used for the seismic performance evaluation of structures and equipment. In this study, a generalized response spectrum shape is proposed for seismic performance evaluation of structures and equipment for nuclear power plants. The proposed response spectrum shape reflects the characteristics of earthquake motion in Korea through earthquake hazard analysis, and it can be applied to structures and equipment at various locations.

Design of Frictional Bearing in Isolated Bridge Using Nonlinear Response Spectrum (비선형 응답스펙트럼을 이용한 지진격리교량의 마찰받침 설계)

  • 하동호;송현섭;고현무
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2001.09a
    • /
    • pp.311-319
    • /
    • 2001
  • Recently, the number of seismically isolated bridges increased suddenly since the occurrence of strong earthquakes. However, because isolator lies between pier and girder, the response of the superstructure of seismically isolated bridge may be magnified and induce risk of unseating girder Consequently, the response of girder constitutes a crucial factor in designing bridge. In the case of frictional bearing, the inherent nonlinearity makes the use of former linear response spectrum unable to estimate the maximum response of the bearing, and nonlinear tlme history analysis shall be applied. In this paper, nonlinear response spectrum considering frictional element is established, and simple analysis method using such nonlinear spectrum is proposed to estimate the maximum response of the superstructure.

  • PDF

Seismic hazard and response spectrum modelling for Malaysia and Singapore

  • Looi, Daniel T.W.;Tsang, H.H.;Hee, M.C.;Lam, Nelson T.K.
    • Earthquakes and Structures
    • /
    • v.15 no.1
    • /
    • pp.67-79
    • /
    • 2018
  • Malaysia and Singapore have adopted Eurocode 8 (EC8) for the seismic design of building structures. The authors studied the seismic hazard modelling of the region surrounding Malaysia and Singapore for a long time and have been key contributors to the drafting of the Malaysia National Annex (NA). The purpose of this paper is to explain the principles underlying the derivation of the elastic response spectrum model for Malaysia (Peninsular Malaysia, Sarawak and Sabah). The current EC8 NA for Singapore is primarily intended to address the distant hazards from Sumatra and is not intended to provide coverage for potential local intraplate hazards. Hence, this paper recommends a reconciled elastic response spectrum for Singapore, aiming to achieve a more robust level of safety. The topics covered include the modelling of distant interplate earthquakes generated offshore and local earthquakes in an intraplate tectonic setting, decisions on zoning, modelling of earthquake recurrences, ground motion and response spectrum. Alternative expression for response spectrum on rock, strictly based on the rigid framework of EC8 is discussed.

Response of Base Isolation System Subjected to Spectrum Matched Input Ground Motions (스펙트럼 적합 입력지반운동에 의한 면진구조의 응답 특성)

  • Kim, Jung Han;Kim, Min Kyu;Choi, In-Kil
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.17 no.2
    • /
    • pp.89-95
    • /
    • 2013
  • Structures in a nuclear power system are designed to be elastic even under an earthquake excitation. However a structural component such as an isolator shows inelastic behavior inherently. For the seismic assessment of nonlinear structures, response history analysis should be performed. In this study, the response of base isolation system was analyzed by response history analysis for the seismic performance assessment. Firstly, several seismic assessment criteria for a nuclear power plant structure were reviewed for the nonlinear response history analysis. Based on these criteria, the spectrum matched ground motion generation method modifying a seed earthquake ground motion time history was adjusted. Using these spectrum matched accelerograms, the distribution of displacement responses of the simplified base isolation system was evaluated. The resulting seismic responses excited by the modified ground motion time histories and the synthesized time history generated by stochastic approach were compared. And the response analysis of the base isolation system considering the different intensities in each orthogonal direction was performed.

Characteristics of Spectral Matched Ground Motions Time Histories According to Seed Ground Motion Selection (원본 지반운동 시간이력에 따른 스펙트럼 부합 시간이력의 특성)

  • Choi, Da Seul;Ji, Hae Yeon;Kim, Jung Han
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.25 no.1
    • /
    • pp.43-52
    • /
    • 2021
  • According to several seismic design standards, a ground motion time history should be selected similar to the design response spectrum, or a ground motion time history should be modified by matching procedure to the design response spectrum through the time-domain method. For the response spectrum matching procedure, appropriate seed ground motions need to be selected to maintain recorded earthquake accelerogram characteristics. However, there are no specific criteria for selecting the seed ground motions for applying this methodology. In this study, the characteristics of ground motion time histories between seed motions and spectral matched motions were compared. Intensity measures used in the design were compared, and their change by spectral matching procedure was quantified. In addition, the seed ground motion sets were determined according to the response spectrum shape, and these sets analyzed the response of nonlinear and equivalent linear single degrees of freedom systems to present the seed motion selection conditions for spectral matching. As a result, several considerations for applying the time domain spectral matching method were presented.

Development of Ground Motion Response Spectrum for Seismic Risk Assessment of Low and Intermediate Level Radioactive Waste Repositories (중·저준위 방사성 폐기물 처분장의 지진위험도 평가를 위한 지반운동스펙트럼 산정)

  • Kim, Min-Kyu;Rhee, Hyun-Me;Lee, Kyoung-Mi
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.15 no.1
    • /
    • pp.57-63
    • /
    • 2011
  • In this study, a ground motion response spectrum for the seismic risk assessment of low and intermediate level radioactive waste repositories was developed. For the development of the ground motion response spectrum, a probabilistic seismic hazard analysis (PSHA) was performed. Through the performance of a PSHA, a seismic hazard curve which was based on a seismic bed rock was developed. A uniform hazard spectrum was determined by using a developed seismic hazard curve. Artificial seismic motions were developed based on the uniform hazard spectrum. A seismic response analysis was performed on the developed artificial seismic motion. Finally, an evaluation response spectrum for the seismic risk assessment analysis of low and intermediate level radioactive waste repositories was developed.

Maxima Response Spectrum for each Mechnical Vibration and its Application (기계적 진동에 대한 MRS 및 MRS의 응용)

  • 김재하;우호길
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.4 no.1
    • /
    • pp.234-245
    • /
    • 2001
  • This paper considers the Maximum Pesponse Spectrum for the random vibration, sinusoidal vibration, linear sweep vibration. The random vibration quality levels and the sinusoidal vibration quality level are compared using MRS. And the severity between the vibration test specification and real environments using Maximum Response Spectrum are also compared using it.

  • PDF

A Method for Selecting Ground Motions Considering Target Response Spectrum Mean, Variance and Correlation - I Algorithm (응답 스펙트럼의 평균과 분산, 상관관계를 모두 고려한 지반운동 선정 방법 - I 알고리즘)

  • Han, Sang Whan;Ha, Seong Jin;Cho, Sun Wook
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.20 no.1
    • /
    • pp.55-62
    • /
    • 2016
  • It is important to select an accurate set of ground motions when conducting linear and nonlinear response history analyses of structures. This study proposes a method for selecting ground motions from a ground motion library with response spectra that match the target response spectrum mean, variance and correlation structures. This study also has addressed the determination of an appropriate value for the weight factor of a correlation structure. The proposed method is conceptually simple and straightforward, and does not involve a simulation algorithm. In this method, a desired number of ground motions are sequentially selected from first to last. The proposed method can be also used for selecting ground motions with response spectra that match the conditional spectrum. The accuracy and efficiency of the proposed procedure are verified with numerical examples.

Preliminary Design Procedure for Practical Application of Dampers Using Earthquake Response Spectrum (응답스펙트럼을 활용한 감쇠장치 예비 설계절차 제시)

  • Roh, Ji Eun;Lee, Sang Hyun
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.23 no.2
    • /
    • pp.109-117
    • /
    • 2019
  • In this study, a design procedure for the practical application of the dampers to building structures under earthquake loads was presented by using earthquake response spectrum. Nonlinear time history results using a 10 story building structure installed with damper verified the effectiveness of the proposed procedure by showing that the structural response could be reduced to the target performance level for seismic loads. Since the proposed design procedures are based on response spectrum seismic analysis result of the original structure, the capacity, location and the number of damper and the consequent response reduction effects can be preliminarily determined without performing the nonlinear time history analysis.

Modified complex mode superposition design response spectrum method and parameters optimization for linear seismic base-isolation structures

  • Huang, Dong-Mei;Ren, Wei-Xin;Mao, Yun
    • Earthquakes and Structures
    • /
    • v.4 no.4
    • /
    • pp.341-363
    • /
    • 2013
  • Earthquake response calculation, parametric analysis and seismic parameter optimization of base-isolated structures are some critical issues for seismic design of base-isolated structures. To calculate the earthquake responses for such non-symmetric and non-classical damping linear systems and to implement the earthquake resistant design codes, a modified complex mode superposition design response spectrum method is put forward. Furthermore, to do parameter optimization for base-isolation structures, a graphical approach is proposed by analyzing the relationship between the base shear ratio of a seismic base-isolation floor to non-seismic base-isolation one and frequency ratio-damping ratio, as well as the relationship between the seismic base-isolation floor displacement and frequency ratio-damping ratio. In addition, the influences of mode number and site classification on the seismic base-isolation structure and corresponding optimum parameters are investigated. It is demonstrated that the modified complex mode superposition design response spectrum method is more precise and more convenient to engineering applications for utilizing the damping reduction factors and the design response spectrum, and the proposed graphical approach for parameter optimization of seismic base-isolation structures is compendious and feasible.