• Title/Summary/Keyword: Spectrum Resource

Search Result 244, Processing Time 0.037 seconds

Improved Resource Allocation Model for Reducing Interference among Secondary Users in TV White Space for Broadband Services

  • Marco P. Mwaimu;Mike Majham;Ronoh Kennedy;Kisangiri Michael;Ramadhani Sinde
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.4
    • /
    • pp.55-68
    • /
    • 2023
  • In recent years, the Television White Space (TVWS) has attracted the interest of many researchers due to its propagation characteristics obtainable between 470MHz and 790MHz spectrum bands. The plenty of unused channels in the TV spectrum allows the secondary users (SUs) to use the channels for broadband services especially in rural areas. However, when the number of SUs increases in the TVWS wireless network the aggregate interference also increases. Aggregate interferences are the combined harmful interferences that can include both co-channel and adjacent interferences. The aggregate interference on the side of Primary Users (PUs) has been extensively scrutinized. Therefore, resource allocation (power and spectrum) is crucial when designing the TVWS network to avoid interferences from Secondary Users (SUs) to PUs and among SUs themselves. This paper proposes a model to improve the resource allocation for reducing the aggregate interface among SUs for broadband services in rural areas. The proposed model uses joint power and spectrum hybrid Firefly algorithm (FA), Genetic algorithm (GA), and Particle Swarm Optimization algorithm (PSO) which is considered the Co-channel interference (CCI) and Adjacent Channel Interference (ACI). The algorithm is integrated with the admission control algorithm so that; there is a possibility to remove some of the SUs in the TVWS network whenever the SINR threshold for SUs and PU are not met. We considered the infeasible system whereby all SUs and PU may not be supported simultaneously. Therefore, we proposed a joint spectrum and power allocation with an admission control algorithm whose better complexity and performance than the ones which have been proposed in the existing algorithms in the literature. The performance of the proposed algorithm is compared using the metrics such as sum throughput, PU SINR, algorithm running time and SU SINR less than threshold and the results show that the PSOFAGA with ELGR admission control algorithm has best performance compared to GA, PSO, FA, and FAGAPSO algorithms.

Opportunistic Relaying Based Spectrum Leasing for Cognitive Radio Networks

  • Asaduzzaman, Asaduzzaman;Kong, Hyung-Yun;Koo, In-Soo
    • Journal of Communications and Networks
    • /
    • v.13 no.1
    • /
    • pp.50-55
    • /
    • 2011
  • Spectrum leasing for cognitive radio (CR) networks is an effective way to improve the spectrum utilization. This paper presents an opportunistic relaying based spectrum leasing for CR networks where the primary users lease their frequency band to the cognitive users. The cognitive users act as relays for the primary users to improve the channel capacity, and this improved capacity is used for the transmission of secondary users' data. We show that the cognitive users can use a significant portion of the communication resource of primary networks while maintaining a fixed target data rate for the primary users. Moreover, the primary network is also benefited by the cooperating cognitive users in terms of outage probability. Information theoretic analysis and simulation results are presented to evaluate the performances of both primary and cognitive networks.

Improved Resource Allocation Scheme in LTE Femtocell Systems based on Fractional Frequency Reuse

  • Lee, Insun;Hwang, Jaeho;Jang, Sungjeen;Kim, Jaemoung
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.9
    • /
    • pp.2153-2169
    • /
    • 2012
  • Femtocells provide high quality indoor communications with low transmit power. However, when femtocells are applied in cellular systems, a co-channel interference problem between macrocells and femtocells occurs because femtocells use the same spectrum as do the macrocells. To solve the co-channel interference problem, a previous study suggested a resource allocation scheme in LTE cellular systems using FFR. However, this conventional resource allocation scheme still has interference problems between macrocells and femtocells near the boundary of the sub-areas. In this paper, we define an optimization problem for resource allocation to femtocells and propose a femtocell resource allocation scheme to solve the optimization problem and the interference problems of the conventional scheme. The evaluation of the proposed scheme is conducted by System Level Simulation while varying the simulation environments. The simulation results show that the proposed scheme is superior to the conventional scheme and that it improves the overall performance of cellular systems.

Erlang Capacity of Cognitive Radio Systems Utilizing Buffer for Spectrum Handoff Calls (스펙트럼 핸드오프 호를 위해 버퍼를 활용하는 무선인지시스템의 얼랑 용량)

  • Pham, Thi Hong Chau;Koo, In-Soo
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.10 no.1
    • /
    • pp.145-150
    • /
    • 2010
  • In this paper, the performance of cognitive radio network is analyzed in terms of Erlang capacity. To improve the Erlang capacity with respect to primary user (PU) and secondary user (SU) traffic, we propose an efficient radio resource management scheme utilizing the buffer for new SUs and interrupted SUs. Markov model is developed, and analyzed to derive the performances of the proposed spectrum sharing scheme in both primary system and secondary system. To determine the Erlang capacity region, the blocking probability, the forced termination probability and the non-completion probability are calculated. Simulation results provide insight into the advantages of the buffer utilization. It is observed that the supportable traffic loads of PU and SU can be increased significantly according to the buffer length.

Resource Allocation Algorithm for Multi-cell Cognitive Radio Networks with Imperfect Spectrum Sensing and Proportional Fairness

  • Zhu, Jianyao;Liu, Jianyi;Zhou, Zhaorong;Li, Li
    • ETRI Journal
    • /
    • v.38 no.6
    • /
    • pp.1153-1162
    • /
    • 2016
  • This paper addresses the resource allocation (RA) problem in multi-cell cognitive radio networks. Besides the interference power threshold to limit the interference on primary users PUs caused by cognitive users CUs, a proportional fairness constraint is used to guarantee fairness among multiple cognitive cells and the impact of imperfect spectrum sensing is taken into account. Additional constraints in typical real communication scenarios are also considered-such as a transmission power constraint of the cognitive base stations, unique subcarrier allocation to at most one CU, and others. The resulting RA problem belongs to the class of NP-hard problems. A computationally efficient optimal algorithm cannot therefore be found. Consequently, we propose a suboptimal RA algorithm composed of two modules: a subcarrier allocation module implemented by the immune algorithm, and a power control module using an improved sub-gradient method. To further enhance algorithm performance, these two modules are executed successively, and the sequence is repeated twice. We conduct extensive simulation experiments, which demonstrate that our proposed algorithm outperforms existing algorithms.

Performance Analysis of S-SFR-based OFDMA Cellular Systems

  • Kim, Yi-Kang;Cho, Choong-Ho;Yoon, Seok-Ho;Kim, Seung-Yeon
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.1
    • /
    • pp.186-205
    • /
    • 2019
  • Intercell interference coordination (ICIC) is considered as a promising technique to increase the spectral efficiency of OFDMA cellular systems. The soft frequency reuse (SFR) and fractional frequency reuse (FFR) are representative and efficient management techniques for ICIC. Herein, to enhance the performance of the SFR scheme, we propose a call admission (CAC) scheme. In this CAC scheme, called Spectrum handoff-SFR(S-SFR), the spectrum handoff technique is applied to the user equipment (UE) located near the cell center. We derive the traffic analysis model to describe the S-SFR. In addition, a two-dimensional (2-D) Markov chain and an outage analysis are used in our analytical model. From the traffic analysis, the significant performance measures are the outage probability, call blocking probability, system throughput and resource utilization. Based on those, the outage probability and system throughput are obtained using resource utilization as an interference pattern. The analytical results are verified with computer simulation results. Finally, we compare our proposed scheme with other ICI schemes.

Coalition based Optimization of Resource Allocation with Malicious User Detection in Cognitive Radio Networks

  • Huang, Xiaoge;Chen, Liping;Chen, Qianbin;Shen, Bin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.10
    • /
    • pp.4661-4680
    • /
    • 2016
  • Cognitive radio (CR) technology is an effective solution to the spectrum scarcity issue. Collaborative spectrum sensing is known as a promising technique to improve the performance of spectrum sensing in cognitive radio networks (CRNs). However, collaborative spectrum sensing is vulnerable to spectrum data falsification (SSDF) attack, where malicious users (MUs) may send false sensing data to mislead other secondary users (SUs) to make an incorrect decision about primary user (PUs) activity, which is one of the key adversaries to the performance of CRNs. In this paper, we propose a coalition based malicious users detection (CMD) algorithm to detect the malicious user in CRNs. The proposed CMD algorithm can efficiently detect MUs base on the Geary'C theory and be modeled as a coalition formation game. Specifically, SSDF attack is one of the key issues to affect the resource allocation process. Focusing on the security issues, in this paper, we analyze the power allocation problem with MUs, and propose MUs detection based power allocation (MPA) algorithm. The MPA algorithm is divided into two steps: the MUs detection step and the optimal power allocation step. Firstly, in the MUs detection step, by the CMD algorithm we can obtain the MUs detection probability and the energy consumption of MUs detection. Secondly, in the optimal power allocation step, we use the Lagrange dual decomposition method to obtain the optimal transmission power of each SU and achieve the maximum utility of the whole CRN. Numerical simulation results show that the proposed CMD and MPA scheme can achieve a considerable performance improvement in MUs detection and power allocation.

Social-Aware Resource Allocation Based on Cluster Formation and Matching Theory in D2D Underlaying Cellular Networks

  • Zhuang, Wenqin;Chen, Mingkai;Wei, Xin;Li, Haibo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.5
    • /
    • pp.1984-2002
    • /
    • 2020
  • With the appearance of wireless spectrum crisis in traditional cellular network, device-to-device (D2D) communication has been regarded as a promising solution to ease heavy traffic burden by enabling precise content delivery among mobile users. However, due to the channel sharing, the interference between D2D and cellular users can affect the transmission rate and narrow the throughput in the network. In this paper, we firstly present a weighted interference minimization cluster formation model involving both social attribute and physical closeness. The weighted-interference, which is evaluated under the susceptible-infected(SI) model, is utilized to gather user in social and physical proximity. Then, we address the cluster formation problem via spectrum clustering with iterative operation. Finally, we propose the stable matching theory algorithm in order to maximize rate oriented to accomplish the one-to-one resource allocation. Numerical results show that our proposed scheme acquires quite well clustering effect and increases the accumulative transmission rate compared with the other two advanced schemes.

Performance Analysis of Cognitive Radio Cooperative Spectrum Sensing for Intelligent Transport System (지능형 교통 시스템을 위한 인지무선 협력 스펙트럼 센싱의 성능 분석)

  • Kim, Jin-Young;Baek, Myung-Kie
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.7 no.6
    • /
    • pp.110-120
    • /
    • 2008
  • Cognitive Radio (CR) technology is proposed for using the unused spectrum band efficiently because of the spectrum scarcity problems. Spectrum sensing technology is one of the key challenge issues in cognitive radio technologies, which enables unlicensed users to identify and utilize vacant spectrum resource allocated to primary users. In this paper, the cooperative spectrum sensing technologies apply the ITS(Intelligent Transport System) and performance of signal detection analyzes. Then, we utilize the OR-rule and AND-rule for the cooperative signal detection. These data fusion rules improve the performance and reliability of the signal detection.

  • PDF

Analysis on 3G Mobile Spectrum Charges by International Comparison (국제간 비교를 통한 3세대 이동통신 주파수 할당대가 분석)

  • Kim, Tae-Sung;Kim, Min-Jeong;Jun, Hyo-Jung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.11B
    • /
    • pp.1261-1271
    • /
    • 2009
  • Emergence of new mobile communication services has generated new demand for spectrum. Because spectrum is a scarce public resource, demand for spectrum would exceed supply. As the demand for spectrum grows, the spectrum management policy becomes one of the most important issues in mobile telecommunications industry. Huge license charges for spectrum usage may obstruct the growth of mobile telecommunications industry. We analyze spectrum charges by international comparison for the case of 3G mobile telecommunication spectrum assignment. There are mainly two types of methods in spectrum assignment of 3G service, one is the auction and the other is the beauty contest. This article aims to analyze factors which influence on spectrum charges and to study the characteristic of spectrum charges of some selected countries. This study suggests the multiple regression model about spectrum charges.