• Title/Summary/Keyword: Spectrum Quantification

Search Result 58, Processing Time 0.028 seconds

Recent NMR developments for pharmaceutical research

  • Lee, Kwanghwan
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.20 no.1
    • /
    • pp.27-35
    • /
    • 2016
  • NMR spectrometer has been regarded as essential tool for structure elucidation in variable scientific field as like organic synthesis, natural product and macro protein research. Also NMR can be applied for defining dynamic behavior like ligand and receptor binding. One of advantage of research with NMR is that to be great confident to confirm structure and the measured sample could be recovered. Nevertheless NMR also has a weak points than other spectroscopic methods that require a lot of time for interpreting acquired spectrum and running time due to low sensitivity. For last two decade Bruker has developed hardware and software solution for overcome those weak points. In order to overcome low sensitivity Bruker introduced Cryo and Micro diameter probe head technology. And researcher can reduce the time for routine spectrum processing and interpretation works due to lots of introductions in software solutions for quantification, identification and statistics analysis. With four examples, this article describing those new hardware and software solutions in field of recent pharmaceutical research as follows. - New Horizons for NMR in the Biopharmaceutical Industry - The development and application of solid-state NMR spectroscopy (SSNMR) in pharmaceutical analysis - Assisted NMR Data Interpretation in Synthetic Chemistry - Complete Analysis of New Psychoactive Substances Using NMR.

Spectrum of Pulmonary Fibrosis from Interstitial Lung Abnormality to Usual Interstitial Pneumonia: Importance of Identification and Quantification of Traction Bronchiectasis in Patient Management

  • Takuya Hino;Kyung Soo Lee;Joungho Han;Akinori Hata;Kousei Ishigami;Hiroto Hatabu
    • Korean Journal of Radiology
    • /
    • v.22 no.5
    • /
    • pp.811-828
    • /
    • 2021
  • Following the introduction of a novel pathological concept of usual interstitial pneumonia (UIP) by Liebow and Carrington in 1969, diffuse interstitial pneumonia has evolved into UIP, nonspecific interstitial pneumonia (NSIP), and interstitial lung abnormality (ILA); the histopathological and CT findings of these conditions reflect the required multidisciplinary team approach, involving pulmonologists, radiologists, and pathologists, for their diagnosis and management. Concomitantly, traction bronchiectasis and bronchiolectasis have been recognized as the most persistent and important indices of the severity and prognosis of fibrotic lung diseases. The traction bronchiectasis index (TBI) can stratify the prognoses of patients with ILAs. In this review, the evolutionary concepts of UIP, NSIP, and ILAs are summarized in tables and figures, with a demonstration of the correlation between CT findings and pathologic evaluation. The CT-based UIP score is being proposed to facilitate a better understanding of the spectrum of pulmonary fibrosis, from ILAs to UIP, with emphasis on traction bronchiectasis/bronchiolectasis.

Quantification of Protein and Amylose Contents by Near Infrared Reflectance Spectroscopy in Aroma Rice (근적외선 분광분석법을 이용한 향미벼의 아밀로스 및 단백질 정량분석)

  • Kim, Jeong-Soon;Song, Mi-Hee;Choi, Jae-Eul;Lee, Hee-Bong;Ahn, Sang-Nag
    • Korean Journal of Food Science and Technology
    • /
    • v.40 no.6
    • /
    • pp.603-610
    • /
    • 2008
  • The principal objective of current study was to evaluate the potential of near infrared reflectance spectroscopy (NIRS) as a non-destructive method for the prediction of the amylose and protein contents of un-hulled and brown rice in broad-based calibration models. The average amylose and protein content of 75 rice accessions were 20.3% and 7.1%, respectively. Additionally, the range of amylose and protein content were 16.6-24.5% and 3.8-9.3%, respectively. In total, 79 rice germplasms representing a wide range of chemical characteristics, variable physical properties, and origins were scanned via NIRS for calibration and validation equations. The un-hulled and brown rice samples evidenced distinctly different patterns in a wavelength range from 1,440 nm to 2,400 nm in the original NIR spectra. The optimal performance calibration model could be obtained by MPLS (modified partial least squares) using the first derivative method (1:4:4:1) for un-hulled rice and the second derivative method (2:4:4:1) for brown rice. The correlation coefficients $(r^2)$ and standard error of calibration (SEC) of protein and amylose contents for the un-hulled rice were 0.86, 2.48, and 0.84, 1.13, respectively. The $r^2$ and SEC of protein and amylose content for brown rice were 0.95, 1.09 and 0.94, 0.42, respectively. The results of this study suggest that the NIRS technique could be utilized as a routine procedure for the quantification of protein and amylose contents in large accessions of un-hulled rice germplasms.

Quantitative Analysis for Biomass Energy Problem Using a Radial Basis Function Neural Network (RBF 뉴럴네트워크를 사용한 바이오매스 에너지문제의 계량적 분석)

  • Baek, Seung Hyun;Hwang, Seung-June
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.36 no.4
    • /
    • pp.59-63
    • /
    • 2013
  • In biomass gasification, efficiency of energy quantification is a difficult part without finishing the process. In this article, a radial basis function neural network (RBFN) is proposed to predict biomass efficiency before gasification. RBFN will be compared with a principal component regression (PCR) and a multilayer perceptron neural network (MLPN). Due to the high dimensionality of data, principal component transform is first used in PCR and afterwards, ordinary regression is applied to selected principal components for modeling. Multilayer perceptron neural network (MLPN) is also used without any preprocessing. For this research, 3 wood samples and 3 other feedstock are used and they are near infrared (NIR) spectrum data with high-dimensionality. Ash and char are used as response variables. The comparison results of two responses will be shown.

Etiology and Epidemiology of Clubroot Disease of Chinese Cabbage and Its Management in Korea

  • Kim, Choong-Hoe
    • Proceedings of the Korean Society of Plant Pathology Conference
    • /
    • 2003.10a
    • /
    • pp.9-12
    • /
    • 2003
  • Clubroot disease of curcifer crops caused by Plasmodiophora brassicae had been first reported in 1920 in Korea, and maintained mild occurrence until 1980s. Since 1990s the disease has become severe in alpine areas of Kyonggi and Kangwon, gradually spread to plain fields throughout the country, and remains as the greatest limiting factor for its production. Researches on the disease has begun in late 1990s in our laboratory after experiencing severe epidemics. Survey of occurrence and etiological and ecological studies have been carried out, particularly, on the pathogen physiology, race identification, quantification of soil pathogen population, host spectrum of the pathogen, and control measures.(중략)

  • PDF

PCR of Gut Contents for a Food Web Study of a Marine Ecosystem

  • Kim, Nack-Keun;Kim, Kyoung-Sun;Kim, Hyun-Woo
    • Fisheries and Aquatic Sciences
    • /
    • v.10 no.4
    • /
    • pp.179-185
    • /
    • 2007
  • Understanding dietary habits is one of the most important factors in studying food webs and other ecological processes. Here we designed universal primers to amplify portions of the 18S and 28S rDNA sequences to examine gut contents using PCR techniques. The gut contents of sailfin sandfish (Arctoscopus japonicus) and pacific squid (Todarodes pacificus) were examined. In total, 11 families of prey were identified with 18S and 28S rDNA using the universal primers. The DNA sequence data indicated that the primer sets successfully amplified a wide spectrum of species and represented gut contents in a relatively convenient way. We found that information in the NCBI database was not yet sufficient to discriminate the species we isolated. In addition, technology for the separation of heterogeneous PCR products and better resolution and quantification protocols would help increase data accuracy.

Synthesis and Anticonvulsant Evaluation of a Series of $N-Cbz-\alpha-aminoglutarimides$

  • Lee, Jaewon;Choi, Jongwon;Park, Minsoo
    • Archives of Pharmacal Research
    • /
    • v.19 no.3
    • /
    • pp.248-250
    • /
    • 1996
  • In conclusion, a series of N-Cbz-.alpha.-amono-glutarimides (1a-f), combining common structures such as N-CO-C-N and cyclic imide in a single molecule, were prepared from the (R)- or (S)-N-Cbz-glutamic acid and evaluated for their anticonvulsant activities in MES and PTZ tests in order to develope new and broad spectrum anticonvulsant. In this study, N-Cbz-.alpha.-aminoglutarimides (1) except ac and af, showed significant anticonvulsant activity in both MES and PTZ tests enough to be recommended as promising new anticonvulsant drug candidates. Now we are continuing to investigate further anticonvulsant test (quantification)for these compounds and synthesize their analogues in order to develop more active anticonvulsant and define the structure activity relationship more precisely.

  • PDF

Use of Nuclear Magnetic Resonance Spectroscopy in Analysis of Fennel Essential Oil

  • AbouZid, Sameh
    • Natural Product Sciences
    • /
    • v.22 no.1
    • /
    • pp.30-34
    • /
    • 2016
  • A simple and rapid method based on proton nuclear magnetic resonance spectroscopy was developed for determination of trans-anethole content in fennel essential oil. Spectra of pure trans-anethole, of the pure essential oil of fennel, and of the pure oil of fennel with thymol internal standard were recorded. The signal of $H-1^/$ was used for quantification of trans-anethole. This proton signal is well separated in the proton magnetic resonance spectrum of the compound. No reference compound is needed and cheap internal standard was used. The results obtained from spectroscopic analysis were compared with those obtained by gas chromatography. Additionally, the developed method was used for determination of the type of vegetable oil used as a carrier in commercial products, which cannot be quantified as such by gas chromatography. This study demonstrates the application of proton nuclear magnetic resonance spectroscopy as a quality control method for estimation of essential oil components.

Three Hydroxylated Ginsenosides from Heat Treatmented Ginseng (인삼의 열처리 과정 중 생성되는 3종의 수산화진세노사이드에 대한 연구)

  • Lee, Sang Myung
    • Korean Journal of Pharmacognosy
    • /
    • v.51 no.4
    • /
    • pp.255-263
    • /
    • 2020
  • Ginsenosides are considered to be the most important ingredients in ginseng. They are chemically converted by endogenous organic acids contained in ginseng and the heat applied during red ginseng processing. During this procedure, various converted ginsenosides are produced through hydrolysis of substitute sugars of ginsenosides and forming double bonds through dehydration in the dammarane skeleton. In order to study the conversion mechanism of protopanaxadiol-type ginsenosides during the heat treatment process of ginseng, we purified the three final converted ginsenosides by heating fresh ginseng for a long time. The three isolated ginsenosides were identified as 25(OH)-ginsenoside Rg5, 25(OH)-ginsenoside Rz1 and 25(OH)-ginsenoside Rg3 through NMR spectrum analysis. As a result of quantification of ginseng heated at 100 ℃ for 0 to 6 days by HPLC/UV and TLC methods, the content of 25(OH)-ginsenosides tended to increase in proportion to the time exposed to heat. In particular, the content of 25(OH)-ginsenosid Rg5 was confirmed to be noticeably increased.

Quantitative Analysis of Amylose and Protein Content of Rice Germplasm in RDA-Genebank by Near Infrared Reflectance Spectroscopy (근적외선 분광분석법을 이용한 벼 유전자원의 아밀로스 함량과 단백질 함량 정량분석)

  • Kim, Jeong-Soon;Cho, Yang-Hee;Gwag, Jae-Gyun;Ma, Kyung-Ho;Choi, Yu-Mi;Kim, Jung-Bong;Lee, Jeong-Heui;Kim, Tae-San;Cho, Jong-Ku;Lee, Sok-Young
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.53 no.2
    • /
    • pp.217-223
    • /
    • 2008
  • Amylose and protein contents are important traits determining the edible quality of rice, especially in East Asian countries. Near-Infrared Reflectance Spectroscopy (NIRS) has become a powerful tool for rapid and nondestructive quantification of natural compounds in agricultural products. To test the practically of using NIRS for estimation of brown rice amylose and protein contents, the spectral reflectances ($400{\sim}2500\;nm$) of total 9,483 accessions of rice germplasm in Rural development Administration (RDA) Genebank ere obtained and compared to chemically determined amylose and protein content. The protein content of tested 119 accessions ranged from 6.5 to 8.0% and 25 accessions exhibited protein contents between 8.5 to 9.5%. In case of amylose content, all tested accessions ranged from 18.1 to 21.7% and the grade from 18.1 to 19.9% includes most number of accessions as 152 and 4 accessions exhibited amylose content between 20.5 to 21.7%. The optimal performance calibration model could be obtained from original spectra of brown rice using MPLS (Modified Partial Least Squares) with the correlation coefficients ($r_2$) for amylose and protein content were 0.865 and 0.786, respectively. The standard errors of calibration (SEC) exhibited good statistic values: 2.078 and 0.442 for amylose and protein contents, respectively. All these results suggest that NIR spectroscopy may serve as reputable and rapid method for quantification of brown rice protein and amylose contents in large numbers of rice germplasm.