• Title/Summary/Keyword: Spectrum Dispersion

Search Result 108, Processing Time 0.027 seconds

Simulation of Terahertz Signal Generation by Dispersion-dependent Kelly Sidebands of Mode-locking Fiber Lasers

  • Weiqian Zhao;Mingya Shen;Youyou Hu;Ziye Wang
    • Current Optics and Photonics
    • /
    • v.7 no.4
    • /
    • pp.443-448
    • /
    • 2023
  • The ±1-order Kelly sidebands with dispersion-dependent spacing of mode-locking fiber lasers are investigated for frequency-tunable terahertz signal generation. The principle of dispersion dependence of Kelly sidebands is analyzed. A new method, which is a dispersion-management mechanism introduced into the fiber-laser cavity, is proposed to generate Kelly sidebands with widely tunable wavelength spacing. A spacing tuning range of up to 28.46 nm of the ±1-order Kelly sidebands is obtained in simulation. Using the data of the optical spectrum with dispersion-dependent Kelly sidebands, the frequency spectrum of generated terahertz signals is calculated. Consequently, the signal frequency can be changed from 0.09 to 2.27 THz.

Development of Advanced Data Analysis Method Using Harmonic Wavelet Transform for Surface Wave Method (하모닉 웨이브릿 변환을 이용한 표면파 시험을 위한 향상된 데이터 해석기법의 개발)

  • Park, Hyung-Choon;Cho, Sung-Eun
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.4
    • /
    • pp.115-123
    • /
    • 2008
  • The dispersive phase velocity of a wave propagating through multilayered systems such as a soil site is an important parameter and carries valuable information in non-destructive site characterization tests. The dispersive phase velocity of a wave can be determined using the phase spectrum, which is easily evaluated through the cross power spectrum. However, the phase spectrum determined using the cross power spectrum is easily distorted by background noise which always exists in the field. This causes distortion of measured signal and difficulties in the determination of the dispersive phase velocities. In this paper, a new method to evaluate the phase spectrum using the harmonic wavelet transform is proposed and the phase spectrum by the proposed method is applied to the determination of dispersion curve. The proposed method can successfully remove background noise effects. To evaluate the validity of the proposed method, numerical simulations of multi-layered systems were performed. Phase spectrums and dispersion curves determined by the proposed method were found to be in good agreement with the actual phase spectrums and dispersion curves biased by heavy background noise. The comparison manifests the proposed method to be a very useful tool to overcome noise effects.

Microwave Signal Spectrum Broadening System Based on Time Compression

  • Kong, Menglong;Tan, Zhongwei;Niu, Hui;Li, Hongbo;Gao, Hongpei
    • Current Optics and Photonics
    • /
    • v.4 no.4
    • /
    • pp.310-316
    • /
    • 2020
  • We propose and experimentally demonstrate an all-optical radio frequency (RF) spectrum broadening system based on time compression. By utilizing the procedure of dispersion compensation values, the frequency domain is broadened by compressing the linear chirp optical pulse which has been multiplexed by the radio frequency. A detailed mathematical description elucidates that the time compression is a very preferred scheme for spectrum broadening. We also report experimental results to prove this method, magnification factor at 2.7, 8 and 11 have been tested with different dispersion values of fiber, the experimental results agree well with the theoretical results. The proposed system is flexible and the magnification factor is determined by the dispersion values, the proposed scheme is a linear system. In addition, the influence of key parameters, for instance optical bandwidth and the sideband suppression ratio (SSR), are discussed. Magnification factor 11 of the proposed system is demonstrated.

Proposal and Analysis of Wavelength-Switchable Optical Fiber Filter Based on a Solc Type

  • Kim, Min-Wook;Jung, Jae-Hoon
    • Journal of the Optical Society of Korea
    • /
    • v.12 no.3
    • /
    • pp.147-151
    • /
    • 2008
  • This paper proposes a new polarization-independent Sagnac birefringence loop structure-based multiwavelength-periodic filter and presents measurements and analysis of its spectrum. The filter can be used in several schemes by adjusting the orientation angles of two quarter waveplates and the operating characteristics in the reflection type are analyzed including dispersion and polarization mode dispersion at each principal axis. This filter has polarization-independent spectra but a polarization-dependent dispersion, consequently polarization mode dispersion whose values changes with operating schemes.

Representation of Light Spectrum using N-color Dispersion Photon Mapping (N색 분산 포톤매핑을 이용한 빛의 스펙트럼 표현)

  • Gwak, Young-Sik;Ryoo, Seung-Taek
    • Journal of the Korea Computer Graphics Society
    • /
    • v.16 no.2
    • /
    • pp.39-45
    • /
    • 2010
  • The color of object is a main role that people recognize outdoor entity with its shape. We can perceive the object due to the existence of light such as direct sunlight. Light is classified by wavelength into radio, microwave, infrared, the visible region we perceive as light, ultraviolet, X-rays and gamma rays. White light is all of the colors of light combined within the visible light spectrum. When white light is separated through a prism, we see the visible light spectrum. The various wavelengths of visible light are separated into colors. In this paper, we construct white light as the seven colors of rainbow and suggest the method of N-way color dispersion photon mapping to simulate the natural dispersion phenomenon.

Rexonstruction of Pd Particles Supported on Silica in the Pressure of CO as Studied by Carbon-13 NMR

  • 한옥희;Gary L. Haller;Kurt W. Zilm
    • Bulletin of the Korean Chemical Society
    • /
    • v.19 no.9
    • /
    • pp.942-947
    • /
    • 1998
  • The >$^13C$ NMR spectrum of >$^13CO$ adsorbed on Pd particles varies dramatically depending on dispersion. The spectrum of highly dispersed Pd particles supported on silica is a powder pattern ∼800 ppm wide with a first moment of 410 ppm. A low dispersion sample has a motionally narrowed line centered at 750±30 ppm and only ∼85 ppm full width at half height (FWHH). Over several years, high dispersion samples show an increase in the intensity near 750 ppm. These observations are interpreted as an increase of mobile bridging CO on high dispersion Pd surfaces of particles which resulted from smoothing of the metal particle surfaces in the presence of CO.

Cluster-Based Polarized Spectrum Sharing in Channels with Polarization Mode Dispersion

  • Li, Dongming;Zeng, Zhimin;Guo, Caili;Lin, Xiaolin
    • ETRI Journal
    • /
    • v.36 no.3
    • /
    • pp.502-505
    • /
    • 2014
  • Polarized spectrum sharing (PSS) exploits the spectrum opportunities in a polarized domain. However, when it comes to wideband environments PSS is impaired by the frequency-dependent polarization mode dispersion (PMD); thus, the effective throughput of PSS drops. To combat the PMD effect, this work proposes a cluster-based PSS approach to enable PSS on a narrower frequency span. Simulation results show that the effective throughput of PSS on cluster basis outperforms that of PSS on bandwidth and subcarrier basis.

Impact of target spectra variance of selected ground motions on seismic response of structures

  • Xu, Liuyun;Zhou, Zhiguang
    • Earthquakes and Structures
    • /
    • v.23 no.2
    • /
    • pp.115-128
    • /
    • 2022
  • One common method to select input ground motions to predict dynamic behavior of structures subjected to seismic excitation requires spectral acceleration (Sa) match target mean response spectrum. However, dispersion of ground motions, which explicitly affects the structural response, is rarely discussed in this method. Generally, selecting ground motions matching target mean and variance has been utilized as an appropriate method to predict reliable seismic response. The goal of this paper is to investigate the impact of target spectra variance of ground motions on structural seismic response. Two sets of ground motions with different target variances (zero variance and minimum variance larger than inherent variance of the target spectrum) are selected as input to two different structures. Structural responses at different heights are compared, in terms of peak, mean and dispersion. Results show that increase of target spectra variance tends to increase peak floor acceleration, peak deformation and dispersions of response of interest remarkably. To short-period structures, dispersion increase ratios of seismic response are close to that of Sa of input ground motions at the first period. To long-period structures, dispersions of floor acceleration and floor response spectra increase more significantly at the bottom, while dispersion increase ratios of IDR and deformation are close to that of Sa of input ground motions at the first period. This study could further provide useful information on selecting appropriate ground motion to predict seismic behavior of different types of structures.

2.5 Gb/s transmission of a spectrum-sliced incoherent hight source with 0.92 nm bandwidth over 80 km of dispersion-shifted fiber

  • Shin, Sang-Yung;Han, Jung-Hee;Lee, Jae-Seung
    • Journal of the Optical Society of Korea
    • /
    • v.2 no.1
    • /
    • pp.22-25
    • /
    • 1998
  • We present a spectrum broadening technique to improve the signal-to-noise ratio of spectrum sliced incoherent light sources using the fiber four-wave mixing effect which occurs in a nonlinear loop mirror located at the receiver. The initial transmission channel bandwidth of 0.92 nm was increased to 1.62 nm in the nonlinear loop mirror at the optical receiver, which enhances the signal-to-noise ratio to a desired value. Using this technique, we have demonstrated the transmission of a 2.5 Gb/s NRZ signal with the 0.92 nm bandwidth through a 80 km dispersion-shifted fiber. The measured transmission penalty was less than 0.2 dB at $1{\imes}10^{-10}$ BER.

The Quantitative Characterization of the Dispersion State of Single-Walled Carbon Nanotubes (단일벽 탄소나노튜브의 분산도 정량적 평가)

  • Yoon, Do-Kyung;Choi, Jae-Boong;Kim, Young-Jin;Baik, Seung-Hyun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.4
    • /
    • pp.483-489
    • /
    • 2007
  • We have investigated quantitative measurement techniques of the degree of dispersion of single-walled carbon nanotubes (SWNTs). SWNTs were suspended in aqueous media using a sodium dodecyl sulfate (SDS) surfactant. SWNTs with different dispersion states were prepared by controlling the intensity and time of sonication and centrifugation. The laser spectroscopic techniques were employed to characterize the dispersion state; i.e., raman fluorescence and absorption spectroscopic techniques. Raman spectroscopy has been used to probe the dispersion and aggregation state of SWNTs in solution. Individually suspended SWNTs show increased fluorescence peaks and decreased roping peaks at a raman shift 267 $cm^{-1}$ compared with the samples containing bundles of SWNTs. The ultraviolet-visible-near infrared (UV-vis-NIR) absorption spectrum of decanted supernatant samples show sharp van Hove singularity peaks