DOI QR코드

DOI QR Code

Simulation of Terahertz Signal Generation by Dispersion-dependent Kelly Sidebands of Mode-locking Fiber Lasers

  • Weiqian Zhao (School of Science, Jiangsu University of Science and Technology) ;
  • Mingya Shen (Institute of Applied Photonic Technology, Yangzhou University) ;
  • Youyou Hu (School of Science, Jiangsu University of Science and Technology) ;
  • Ziye Wang (School of Science, Jiangsu University of Science and Technology)
  • Received : 2023.03.15
  • Accepted : 2023.06.06
  • Published : 2023.08.25

Abstract

The ±1-order Kelly sidebands with dispersion-dependent spacing of mode-locking fiber lasers are investigated for frequency-tunable terahertz signal generation. The principle of dispersion dependence of Kelly sidebands is analyzed. A new method, which is a dispersion-management mechanism introduced into the fiber-laser cavity, is proposed to generate Kelly sidebands with widely tunable wavelength spacing. A spacing tuning range of up to 28.46 nm of the ±1-order Kelly sidebands is obtained in simulation. Using the data of the optical spectrum with dispersion-dependent Kelly sidebands, the frequency spectrum of generated terahertz signals is calculated. Consequently, the signal frequency can be changed from 0.09 to 2.27 THz.

Keywords

References

  1. S. Preu, G. H. Dhler, S. Malzer, L. J. Wang, and A. C. Gossard, "Tunable, continuous-wave terahertz photomixer sources and applications," J. Appl. Phys. 109, 061301 (2011). 
  2. S. Jia, M.-C. Lo, L. Zhang, O. Ozolins, A. Udalcovs, D. Kong, X. Pang, R. Guzman, X. Yu, S. Xiao, S. Popov, J. Chen, G. Carpintero, T. Morioka, H. Hu, and L. K. Oxenlowe, "Integrated dual-laser photonic chip for high-purity carrier generation enabling ultrafast terahertz wireless communications," Nat. Commun. 13, 1388 (2022). 
  3. Y. Peng, C. Shi, Y. Zhu, M. Gu, and S. Zhuang, "Terahertz spectroscopy in biomedical field: A review on signal-to-noise ratio improvement," PhotoniX 1, 12 (2020). 
  4. I. C. Mayorga, A. Schmitz, T. Klein, C. Leinz, and R. Gusten, "First in-field application of a full photonic local oscillator to terahertz astronomy," IEEE Trans. Terahertz Sci. Technol. 2, 393-399 (2012).  https://doi.org/10.1109/TTHZ.2012.2191286
  5. M. Y. Jeon, N. Kim, J. Shin, J. S. Jeong, S.-P. Han, C. W. Lee, Y. A. Leem, D.-S. Yee, H. S. Chun, and K. H. Park, "Widely tunable dual-wavelength Er3+-doped fiber laser for tunable continuous-wave terahertz radiation," Opt. Express 18, 12291-12297 (2010).  https://doi.org/10.1364/OE.18.012291
  6. H. Ahmad, F. D. Muhammad, C. H. Pua, and K. Thambiratnam, "Dual-wavelength fiber lasers for the optical generation of microwave and terahertz radiation," IEEE J. Sel. Top. Quantum Electron. 20, 166-173 (2014). 
  7. L. Ponnampalam, M. Fice, H. Shams, C. Renaud, and A. Seeds, "Optical comb for generation of a continuously tunable coherent THz signal from 122.5 GHz to >27 THz," Opt. Lett. 43, 2507-2510 (2018).  https://doi.org/10.1364/OL.43.002507
  8. Z. Jiao, J. Liu, Z. Lu, X. Zhang, P. J. Poole, P. J. Barrios, D. Poitras, and J. Caballero, "Tunable terahertz beat signal generation from an InAs/InP quantum-dot mode-locked laser combined with external-cavity," IEEE Photonics Technol. Lett. 24, 518-520 (2012).  https://doi.org/10.1109/LPT.2011.2182642
  9. W. Zhao, C. Yang, and M. Shen, "A new method for terahertz signal generation using Kelly sidebands of mode-locking fiber laser," Opt. Laser Technol. 134, 106568 (2021). 
  10. W. Zhao, C. Yang, and M. Shen, "Enhanced Kelly sidebands of mode-locking fiber lasers for efficient terahertz signal generation," Opt. Laser Technol. 137, 106802 (2021). 
  11. N. Pandit, D. U. Noske, S. M. J. Kelly, and J. R. Taylor, "Characteristic instability of fibre loop soliton lasers," Electron. Lett. 28, 455-457 (1992).  https://doi.org/10.1049/el:19920287
  12. M. L. Dennis and I. N. Duling, "Role of dispersion in limiting pulse width in fiber lasers," Appl. Phys. Lett. 62, 2911-2913 (1993).  https://doi.org/10.1063/1.109194
  13. Y. Gladush, A. A. Mkrtchyan, D. S. Kopylova, A. Ivanenko, B. Nyushkov, S. Kobtsev, A. Kokhanovskiy, A. Khegai, M. Melkumov, M. Burdanova, M. Staniforth, J. Lloyd-Hughes, and A. G. Nasibulin, "Ionic liquid gated carbon nanotube saturable absorber for switchable pulse generation," Nano Lett. 19, 5836-5843 (2019). https://doi.org/10.1021/acs.nanolett.9b01012