• Title/Summary/Keyword: Spectroscopic method

Search Result 527, Processing Time 0.023 seconds

SPECTROSCOPIC STUDY OF LONG PERIOD ECLIPSIING BINARY 32 CYGNI

  • Chun, Mun-Suk
    • Journal of Astronomy and Space Sciences
    • /
    • v.9 no.2
    • /
    • pp.143-153
    • /
    • 1992
  • Spectra of the $\zeta$ Aurigae type eclipsing binary system 32 Cygni were taken at the Asiago Observatory. Using the Gaussian fitting method we can estimate the radial velocity and equivalent widths of some metalic lines.

  • PDF

Ecdysteroids from Melandrii Herba (왕불류행의 Ecdysteroid성분)

  • 김호경;전원경;고병섭
    • YAKHAK HOEJI
    • /
    • v.45 no.5
    • /
    • pp.455-459
    • /
    • 2001
  • Melandrii Herba has been used for tympanitis, sore throat, dysentery and dehumidifying diuretic. From the BuOH fraction of methanol extracts, three ecdysteroids (ecdysterone, ecdysterone 22-acetate and inokosterone) were isolated by column chromatography using Amberlite XAD-4, ODS and Sephadex LH-20 gel and by HPLC method. The structures of these compounds were identified on the basis of spectroscopic methods.

  • PDF

Online Real-Time Monitoring of Moisture in Pharmaceutical Granules During Fluidized Bed Drying Using Near-Infrared Spectroscopy (근적외분광분석법을 이용한 의약품 건조공정 중 실시간 수분함량 모니터링)

  • Kim, Jaejin;Kim, Byung-Suk;Lim, Young-Il;Woo, Young-Ah
    • YAKHAK HOEJI
    • /
    • v.60 no.2
    • /
    • pp.85-91
    • /
    • 2016
  • Drying of granules for tablet formulation is one of the important unit operations. The loss on drying method is traditionally used for this purpose. However, it is a time-consuming method, requiring at least 1 h. Moreover, it is ineffective in monitoring the moisture content of granules during the drying process. In this study, online real-time monitoring of moisture content during the drying process was successfully performed using near-infrared (NIR) spectroscopy. NIR spectra were collected during 15 different drying batches for developing a reliable NIR spectroscopic method. Such a large number of batches were used to develop a more robust partial least squares (PLS) model. NIR spectra collected from 12 batches were used for developing the model that was validated by predicting the moisture content of the samples in the remaining 3 batches. The standard errors of predictions (SEPs) in the measurement of batch 1, batch 2, and batch 3 were 0.52%, 0.57%, and 0.56%, respectively. The online NIR spectroscopic method developed in this study was reliable and accurate in monitoring the moisture content during the drying process.

Monitoring photo-polymerization reaction using near-IR spectroscopic technique (Near-IR 분광법을 이용한 광 경화 중합반응 관찰)

  • Chung, Soo-Chung;Hong, Jin-Who;Yu, Jeong-A
    • Analytical Science and Technology
    • /
    • v.15 no.4
    • /
    • pp.341-345
    • /
    • 2002
  • The extent of UV-curing photo-polymerization reaction was monitored by near-IR spectroscopic method. Acrylates containing quaternary ammonium salts and Darocur 1173 were used as reactive monomer and a photo initiator, respectively. The extent of photo-polymerization reaction was obtained from the conversion ratio of acrylate double bond calculated from the intensities of measured bands at 1615 nm and at 2105 nm. Near-IR spectroscopic methods can be an useful tool for the monitoring of the progress of photo-polymerization.

Spectroscopic Studies on ZrO2 Modified with MoO3 and Activity for Acid Catalysis

  • Sohn, Jong-Rack;Chun, Eun-Woo;Pae, Young-Il
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.12
    • /
    • pp.1785-1792
    • /
    • 2003
  • Zirconia modified with $MoO_3$ was prepared by impregnation of powdered $Zr(OH)_4$ with ammonium heptamolybdate aqueous solution followed by calcining in air at high temperature. Spectroscopic studies on prepared catalysts were performed by using FTIR, Raman, XRD, and DSC and by measuring surface area. Upon the addition of molybdenum oxide to zirconia up to 15 wt%, the specific surface area increased in proportion to the molybdate oxide content, while acidity measured by irreversible chemisorption of ammonia exhibited a maximum value at 3 wt% of $MoO_3$. Since the $ZrO_2$ stabilizes the molybdenum oxide species, for the samples equal to or less than 30 wt%, molybdenum oxide was well dispersed on the surface of zirconia and no phase of crystalline $MoO_3$ was observed at any calcination temperature above $400^{\circ}C$. The catalytic activities for cumene dealkylation were roughly correlated with the acidity of catalysts measured by ammonia chemisorption method, while the catalytic activities for 2-propanol dehydration were not correlated with the acidity because weak acid sites are necessary for the reaction.

Cosmological constraints using BAO - From spectroscopic to photometric catalogues

  • Sridhar, Srivatsan
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.1
    • /
    • pp.56.2-56.2
    • /
    • 2019
  • Measurement of the location of the baryon acoustic oscillation (BAO) feature in the clustering of galaxies has proven to be a robust and precise method to measure the expansion of the Universe. The best constraints so far have been provided from spectroscopic surveys because the errors on the redshift obtained from spectroscopy are minimal. This in turn means that the errors along the line-of-sight are reduced and so one can expect constraints on both angular diameter distance $D_A$ and expansion rate $H^{-1}$. But, future surveys will probe a larger part of the sky and go to deeper redshifts, which correspond to more number of galaxies. Analysing each galaxy using spectroscopy, which is a time consuming task, will not be practically possible. So, photometry will be the most convenient way to measure redshifts for future surveys such as LSST, Euclid, etc. The advantage of photometry is measuring the redshift of vast number of galaxies in a single exposure, but the disadvantage are the errors associated with the measured redshifts. Using a wedge approach, wherein the clustering is split into different wedges along the line-of-sight ${\pi}$ and across the line-of-sight ${\sigma}$, we show that the BAO information can be recovered even for photometric catalogues with errors along the line-of-sight. This means that we can get cosmological distance constraints even if we don't have spectroscopic information.

  • PDF

Long-term Stability Optimization of Dynamic Spectroscopic Ellipsometery based on Dual-wavelength Calibration (이중 파장 보정방법 기반 다이나믹 분광타원편광계의 안정도 최적화)

  • Choi, Inho;Kheiryzadehkhanghah, Saeid;Choi, Sukhyun;Hwang, Gukhyeon;Shim, Junbo;Kim, Daesuk
    • Journal of the Semiconductor & Display Technology
    • /
    • v.20 no.3
    • /
    • pp.178-183
    • /
    • 2021
  • This paper describes a dynamic spectroscopic ellipsometry based on dual-wavelength calibration. DSE provides ellipsometric parameters at rates above 20 Hz, but the interferometer's sensitivity to temperature makes it difficult for that proposed system to maintain stable 𝜟k over long periods of time. To solve this problem, we set up an additional path in the DSE to perform simulations of the polarization phase calibration method using dual wavelengths. Through simulation, we were able to eliminate most of the polarization phase error and maintain a stable 𝜟k in the long-term stability experiment for 10 hours. This is the result that the 𝜟k stability of the proposed system is improved tens of times compared to the existing system.

Introduction of a New Method for Total Organic Carbon and Total Nitrogen Stable Isotope Analysis of Dissolved Organic Matter in Aquatic Environments (수환경 내 용존성 유기물질의 총 유기탄소 및 총 질소 안정동위원소 신규 분석법 소개)

  • Si-yeong Park;Heeju Choi;Seoyeon Hong;Bo Ra Lim;Seoyeong Choi;Eun-Mi Kim;Yujeong Huh;Soohyung Lee;Min-Seob Kim
    • Korean Journal of Ecology and Environment
    • /
    • v.56 no.4
    • /
    • pp.339-347
    • /
    • 2023
  • Dissolved organic matter (DOM) is a key component in the biogeochemical cycling in freshwater ecosystem. However, it has been rarely explored, particularly complex river watershed dominated by natural and anthropogenic sources, such as various effluent facility and livestock. The current research developed a new analytical method for TOC/TN (Total Organic Carbon/Total Nitrogen) stable isotope ratio, and distinguish DOM source using stable isotope value (δ13C-DOC) and spectroscopic indices (fluorescence index [FI] and biological index [BIX]). The TOC/TN-IR/MS analytical system was optimized and precision and accuracy were secured using two international standards (IAEA-600 Caffein, IAEA-CH-6 Sucrose). As a result of controlling the instrumental conditions to enable TOC stable isotope analysis even in low-concentration environmental samples (<1 mgC L-1), the minimum detection limit was improved. The 12 potential DOM source were collected from watershed, which includes top-soils, groundwater, plant group (fallen leaves, riparian plants, suspended algae) and effluent group (pig and cow livestock, agricultural land, urban, industry facility, swine facility and wastewater treatment facilities). As a result of comparing characteristics between 12 sources using spectroscopic indices and δ13C-DOC values, it were divided into four groups according to their characteristics as a respective DOM sources. The current study established the TOC/TN stable isotope analyses system for the first time in Korea, and found that spectroscopic indices and δ13C-DOC are very useful tool to trace the origin of organic matter in the aquatic environments through library database.