• Title/Summary/Keyword: Spectrometer

Search Result 2,555, Processing Time 0.075 seconds

NEAR INFRARED TRANSFLECTANCE SPECTROSCOPY (NIRS) IN PHYTOCHEMISTRY

  • Huck, C.W.;W.Guggenbichler;Bonn, G.K.
    • Proceedings of the Korean Society of Near Infrared Spectroscopy Conference
    • /
    • 2001.06a
    • /
    • pp.3114-3114
    • /
    • 2001
  • During the last years phytochemistry and phytopharmaceutical applications have developed rapidly and so there exists a high demand for faster and more efficient analysis techniques. Therefore we have established a near infrared transflectance spectroscopy (NIRS) method that allows a qualitative and quantitative determination of new polyphenolic pharmacological active leading compounds within a few seconds. As the NIR spectrometer has to be calibrated the compound of interest has at first to be characterized by using one or other a combination of chromatographic or electrophoretic separation techniques such as thin layer chromatography (TLC), high performance liquid chromatography (HPLC), capillary electrophoresis (CE), gas chromatography (GC) and capillary electrochromatography (CEC). Both structural elucidation and quantitative analysis of the phenolic compound is possible by direct coupling of the mentioned separation methods with a mass spectrometer (GC-MS, LC-MS/MS, CE-MS, CEC-MS) and a NMR spectrometer (LC-NMR). Furthermore the compound has to be isolated (NPLC, MPLC, prep. TLC, prep. HPLC) and its structure elucidated by spectroscopic techniques (UV, IR, HR-MS, NMR) and chemical synthesis. After that HPLC can be used to provide the reference data for the calibration step of the near infrared spectrometer. The NIRS calibration step is time consuming, which is compensated by short analysis times. After validation of the established NIRS method it is possible to determine the polyphenolic compound within seconds which allows to raise the efficiency in quality control and to reduce costs especially in the phytopharmaceutical industry.

  • PDF

Optical Coherence Tomography Applications for Dental Diagnostic Imaging: Prototype System Performance and Preclinical Trial

  • Eun Seo Choi;Won-Jin Yi;Chang-Seok Kim;Woosub Song;Byeong-il Lee
    • Current Optics and Photonics
    • /
    • v.7 no.3
    • /
    • pp.283-296
    • /
    • 2023
  • An intraoral spectral domain optical coherence tomography (SD-OCT) system has been developed, using a custom-built hand-held scanner and spectrometer. The hand-held OCT probe, based on a microelectromechanical systems scanner and a self-built miniaturized drive circuit, had a field of view sufficient for dental diagnosis. The spectrometer using a fabricated f-theta lens provided the image depth required for dental diagnosis. The axial and transverse resolutions of the OCT system in air were 7.5 ㎛ and 12 ㎛ respectively. The hand-held probe could scan an area of 10 × 10 mm2, and the spectrometer could image along a depth of 2.5 mm. To verify the utility of the developed OCT system, OCT images of tooth hard and soft tissues were acquired, and a user-interface program for diagnosis was developed. Early caries and microcracks that were difficult to diagnose with existing methods could be found, and the state of restoration could be observed. Measuring the depth of the gingival sulcus, distinguishing subgingival calculus, and detecting an implant under the gingiva suggested the possibility of the SD-OCT system as a diagnostic for dental soft tissues. Through the presented OCT images, the capability of the developed SD-OCT system for dental diagnosis was demonstrated.

Theoretical Calculation on Alpha Track Density by Using an Electrostatic Ion Spectrometer (정전기분광분석방법에 의한 알파입자비적밀도의 이론적 계산연구)

  • Yoon, Suk-Chul;Ha, Chung-Woo
    • Journal of Radiation Protection and Research
    • /
    • v.18 no.1
    • /
    • pp.25-35
    • /
    • 1993
  • To develop a technique of theoretical alpha track density calculation for comparison with measured track density, an electrostatic ion spectrometer was specially designed and fabricated. The mobility spectrum of first radon daughter(Po-218) in the range of $0.07{\sim}5.0cm^2/V\;s$ from the radon chamber was measured using-the electrostatic ion spectrometer. Measurement was taken in a radon chamber operated using dry particle free air passed through silica gel, activated charcoal and molecular sieve filters. The mobility of a new-born Po-218 ion measured by the electrostatic ion spectrometer was determined to be $1.92cm^2/V\;s$. A comparison of the theoretical and measured alpha track densities was completed and uncertainties concerning the shape of the spectrum were analyzed. It was found that the discrepancies in track densities are primarily Que to the neglect of wall loss of ions in the theoretical track density calculation.

  • PDF

The study for analysis of acidity and moisture in paper record by mobile small NIR spectrometer (이동 가능한 소형 근적외선 분광 분석기를 사용한 종이 기록물 내 산성도 및 함수율 분석에 대한 연구)

  • Lee, Chang Yong;Kim, Chan Bong;Lee, Seong Uk;Cho, Won Bo;Kim, Hyo Jin
    • Analytical Science and Technology
    • /
    • v.25 no.6
    • /
    • pp.370-374
    • /
    • 2012
  • As for quality evaluation of paper records, it is very important to measure acidity and moisture in paper. In the case important paper records, it should be measured directly in field. But ISO standard analytical method would be limited to measure directly in field for quality evaluation of paper records until now. Therefore it could be to use mobile small NIR spectrometer for being analyzed by direct and non-invasive method in field. The wavelength range of small spectrometer has from 900 to 1700 nm, and the surface of paper could be measured by diffused reflected optical fiber probe. Thus, the acidity and moisture could be analyzed on the paper record with from 1970 to 2003. As the result, it could be confirmed to have each more than 0.9 as the correlation of acidity and moisture. Thus, it will be possible to develope the evaluation system of paper record with mobile small NIR spectrometer and optical fiber by the result.

Analysis of a flat-field soft x-ray spectrometer using a 2400-grooves/mm varied line-spacing concave grating (2400 grooves/mm 비등간격 오목에돌이발을 이용하는 평면결상형 연엑스선 분광기의 특성 해석)

  • 최일우;남창희
    • Korean Journal of Optics and Photonics
    • /
    • v.13 no.3
    • /
    • pp.189-196
    • /
    • 2002
  • The components and alignment parameters of a flat-field soft x-ray spectrometer used in the wavelength range below 50 $\AA$ are determined, and the characteristics of the spectrometer are analyzed. It consists of a toroidal mirror, a slit, a varied line-spacing concave grating, and a soft x-ray detector. The space-resolved spectral image of a source is formed on a single plane using the tordidal mirror and the 2400-grooves/mm varied line-spacing concave grating. The former is used to compensate for the astigmatism caused by the grazing incidence of soft x-ray light on the concave grating. The spectral and spatial resolutions of the spectrometer are calculated by applying the wave front aberration theory, and the diffraction efficiency is calculated by applying the scalar diffraction theory.

Fabrication of a Polymeric Planar Nano-diffraction Grating with Nonuniform Pitch for an Integrated Spectrometer Module (집적화된 분광모듈 구현을 위한 고분자 기반의 비등간격 평면나노회절격자 제작)

  • Kim, Hwan-Gi;Oh, Seung-Hun;Choi, Hyun-Yong;Park, Jun-Heon;Lee, Hyun-Yong
    • Korean Journal of Optics and Photonics
    • /
    • v.28 no.2
    • /
    • pp.53-58
    • /
    • 2017
  • This paper presents the design and fabrication of a planar nano-diffraction grating for an integrated miniature spectrometer module. The proposed planar nano-diffraction grating consists of nonuniform periods, to focus the reflected beams from the grating's surface, and an asymmetrical V-shaped groove profile, to provide uniform diffraction efficiency in the wavelength range from 400 to 650 nm. Also, to fabricate the nano-diffraction grating using low-cost UV-NIL technology, we analyzed the FT-IR spectrum of a uvcurable resin and optimized the conditions for the UV curing process. Then, we precisely fabricated the polymeric nano-diffraction grating within 5 nm in dimensional accuracy. The integrated spectrometer module using the fabricated polymeric planar nano-diffraction grating provides spectral resolution of 5 nm and spectral bandwidth of 250 nm. Our integrated spectrometer module using a polymeric planar nano-diffraction grating serves as a quick and easy solution for many spectrometric applications.

Application of Mass Spectrometer-based Electronic Nose for Discrimination of Angelicae gigantis radix

  • Noh, Bong-Soo;Youn, Aye-Ree;Lee, Nam-Yun
    • Food Science and Biotechnology
    • /
    • v.14 no.4
    • /
    • pp.537-539
    • /
    • 2005
  • Potential of mass spectrometer-based electronic nose to discriminate habitat of Angelicae gigantis radix was evaluated using 24 and 86 Korean and non-Korean samples, respectively. Loading plot(s) of principal component analysis of data measured through this system revealed difference between Korean samples (probability; 100%) and non-Korean ones (probability; 95.3%), suggesting this technique could be used as efficient method to differentiate habitat of A. gigantis radix.

Commissioning of neutron triple-axis spectrometers at HANARO

  • Hiraka, Haruhiro;Lee, Jisung;Jeon, Byoungil;Seong, Baek-Seok;Cho, Sangjin
    • Nuclear Engineering and Technology
    • /
    • v.52 no.9
    • /
    • pp.2138-2150
    • /
    • 2020
  • We report the status of the cold neutron triple-axis spectrometer (Cold TAS) and thermal neutron triple-axis spectrometer (Thermal TAS) installed at HANARO. Cold TAS, whose specifications are standard across the world, is in the final phase of commissioning. Proper instrument operation was confirmed through a feasibility study of phonon measurements and data analyses with resolution convolution. In contrast, Thermal TAS is in the initial phase of commissioning, and improvement of the monochromator drum is now in progress from the viewpoint of radiation shielding. In addition, we report recent activities in the development of neutron basic elements, that is, film-coated Si-wafer collimators, which are promising for use in triple-axis spectroscopy, particularly in Cold TAS.

Constructing Overhauser Dynamic Nuclear Polarization-Nuclear Magnetic Resonance System Using Benchtop Electron Paramagnetic Resonance Spectrometer

  • Saun, Seung-Bo;Kim, JiWon;Han, Oc Hee
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.22 no.2
    • /
    • pp.34-39
    • /
    • 2018
  • The Nuclear Magnetic Resonance (NMR) technique using Dynamic Nuclear Polarization (DNP) procedures is one of the promising techniques that enable overcoming low sensitivity problems in NMR spectroscopy. We constructed an ODNP-NMR system using a commercial benchtop EPR spectrometer. The $^1H$ NMR peak area of water in aqueous solutions of 4-hydroxy-TEMPO was enhanced more than 95 times in the ODNP-NMR experiments. Our signal enhancement results were about 55% of the previously reported result. This could be due to non-uniform microwave power over a sample and unwanted sample heating by microwave. However, this portable ODNP-NMR spectrometer will be eventually useful for site-specific detection with nano-scale spatial resolutions and molecular dynamics studies with significantly improved signal sensitivity.

Theoretical Design of Ion Optics for Effective Ion Detection in Single Particle Mass Spectrometer (단일 입자 질량분석기의 효과적인 이온검출을 위한 이온계의 이론적인 설계)

  • Cho Sung-Woo;Lee Dong-Geun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.7 s.250
    • /
    • pp.638-645
    • /
    • 2006
  • Recently, we reported that significant ion loss occurred prior to its detection in the conventional single particles mass spectrometry and more seriously the loss is ion-kinetic-energy-dependent. These lead to significant error in the measured chemical composition of nanoparticles. Here we attempted to design a novel ion optics that is capable of 100% detection of ions generated from single nanoparticle. Using a commercial software SIMION, we simulated the trajectories of ions launched at different speeds inside the previous single particle mass spectrometer We tested how affect changes in shape of repelling plate, adding Einzel lens, substitution of tube electrode between extraction and acceleration grids. As a results, we could find a best design by assembling the trials in the present condition.