• Title/Summary/Keyword: Spectroelectrochemical Study

Search Result 7, Processing Time 0.029 seconds

Electrochemical and Spectrophotometric Studies on Polyaniline and its Degradation

  • Jung-Kyoon Chon;Byung-Hoon Min;Woon-Kie Paik
    • Bulletin of the Korean Chemical Society
    • /
    • v.11 no.2
    • /
    • pp.105-108
    • /
    • 1990
  • A spectroelectrochemical study on the redox chemistry of polyaniline (PANI) was carried out by using indium-tin oxide (ITO) transparent electrode in aqueous acidic solutions. Three different PANI-derived species were observed depending on the potential. The most highly oxidized species having alternating benzenoid-quinoid structures degraded through hydrolysis reaction. The degradation products were confirmed to be p-benzoquinone (BQ) and p-diaminobenzene (PDAB) by spectrophotometry anld potentiostatic experiments. Finally, a degradation mechanism is deduced from the observed behaviour.

Electrochemical Study of Poly(aniline N-alkylsulfonate)s

  • Kim, Eunkyoung;Rhee, Suh Bong
    • Analytical Science and Technology
    • /
    • v.8 no.4
    • /
    • pp.631-636
    • /
    • 1995
  • Electrochemical properties of self-dopable poly(aniline N-butylsulfonate)s in various acidic medium were investigated by spectroelectrochemical techniques. Cyclic voltammetric study showed more than two reversible process of one electron transfer, the potential and peak intensity of which were dependent on the acid concentration and dopant ion. Spectroscopic study at different oxidation level indicated that the electrochromic switching of the poly(aniline N-alkylsulfonate)s film involves structural changes from benzenoid ring to quinoid ring. Spectrocyclic voltammetry together with impedance spectra of the PANBUS film in 0.1 M $LiClO_4$ solution of acetonitrile containing 0.46 M of perchloric acid showed two types of highly conductive states at the intermediate oxidation levels, which can be related to the metallic polaron states doped by two different process.

  • PDF

pH-Dependent Electrochemical Behavior of N-Monosubstituted-4,$4^{\prime}$-Bipyridinium Ions

  • Park, Joon-woo;Kim, Yuna;Lee, Chong-Mok
    • Bulletin of the Korean Chemical Society
    • /
    • v.15 no.10
    • /
    • pp.896-900
    • /
    • 1994
  • The pH-dependent reduction behavior of N-monosubstituted-4,4'-bipyridinium ions ($RBPY^+: R=methyl(C_1)$; benzyl; n-octyl; n-dodecyl) has been investigated by electrochemical and spectroelectrochemical techniques. At acidic condition, $RBPY^+$ is protonated and the protonated species are reduced by two consecutive one-electron processes. The $2e^-$ reduced species undergoes a chemical reaction with $H^+$. The second-order rate constant $(k_H)$ of the homogeneous chemical process is $(3.7{\pm}0.3){\times}10^3M^{-1}s^{-1}$ for the two electron reduction product of $C_1BPY^+$. At high pH, the electrode reduction of $RBPY^+$ is one-step $2e^-$ transfer process with concomitant addition of $H^+$, which is confirmed by cyclic voltammetric study using a microdisk electrode.

Spectroelectrochemical Study for Thin Film of Gold Nanoparticles (금 나노입자 박막의 분광전기화학적 연구)

  • Seo, Seong S.;Chambers, James Q.
    • Journal of the Korean Chemical Society
    • /
    • v.50 no.1
    • /
    • pp.32-36
    • /
    • 2006
  • films of gold nanoparticles were formed on indium tin oxide (ITO) by an electrodeposition method from an aminosilicate stabilized gold colloid solution. The thin films were examined by cyclic voltammetry (CV), scanning electron microscopy (SEM), UV-visible, and energy dispersive X-ray spectroscopy (EDXS). The surface coverage of gold nanoparticles on the thin film was estimated to 1.2 nanomole/cm2. An anthraquinone-2, 6-disulfonic acid, disodium salt (AQDS) self-assembled layer was generated by immersing gold thin film into 1mM of AQDS in 0.1M HClO4 solution for over 20 hours. As a result, a new absorbance peak from the multi-layers (AQDS/thin film of gold /ITO) was obtained about at 690 nm. Also, the surface plasmon absorption of multi-layers was measured by UV-Visible spectrometer along with chronoamperometry by applying the various potentials from +0.5V to -0.5V. The maximum surface plasmon absorption band at 550 nm was decreased by applying negative potentials. The change of absorbance was correlated with the surface coverage of the AQDS indicating the pseudo-capacity surface state of the AQDS layer was coupled to the energy level of the plasmonband by applied negative potentials.

A Study on Electrochemical Behaviors of Samarium Ions in the Molten LiCl-KCl Eutectic Using Optically Transparent Electrode (LiCl-KCl 용융염에서 광학적으로 투명한 전극을 이용한 사마륨 이온의 전기화학적 거동에 관한 연구)

  • Lee, Ae-Ri;Park, Byung Gi
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.15 no.4
    • /
    • pp.313-320
    • /
    • 2017
  • A spectroelectrochemical method has been applied to investigate the electrochemical behaviors and identify the kinds of samarium ions dissolved in high temperature molten LiCl-KCl eutectic. An optically transparent electrode (OTE) fabricated with a tungsten gauze as a working electrode has been used to conduct cyclic voltammetry and potential step chronoabsorptometry. Based on the reversibility of the redox reaction of $Sm^{3+}/Sm^{2+}$, which was determined from the cyclic voltammograms, the formal potential and the diffusion coefficient were calculated to be -1.99 V vs. $Cl_2/Cl^-$ and $2.53{\times}10^{-6}cm^2{\cdot}s^{-1}$, respectively. From the chronoabsorptometry results at the applied potential of -1.5 V vs. Ag/AgCl (1wt%), the characteristic peaks of absorption for samarium ions were determined to be 408.08 nm for $Sm^{3+}$ and 545.62 nm for $Sm^{2+}$. Potential step chronoabsorptometry was conducted using the anodic and the cathodic peak potentials from the voltammograms. Absorbance analysis at 545.63 nm shows that the diffusion coefficient of $Sm^{3+}$ is $2.15{\times}10^{-6}cm^2{\cdot}s^{-1}$, which is comparable to the value determined by cyclic voltammetry at the same temperature.