• Title/Summary/Keyword: Spectral-ratio

Search Result 808, Processing Time 0.029 seconds

Endurance Capacity of the Biceps Brachii Muscle Using the High-to-Low Ratio between Two Signal Spectral Moments of Surface EMG Signals during Isotonic Contractions

  • Lee, Sang-Sik;Jang, Jee-Hun;Cho, Chang-Ok;Kim, Dong-Jun;Moon, Gun-Pil;Kim, Buom;Choi, Ahn-Ryul;Lee, Ki-Young
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.4
    • /
    • pp.1641-1648
    • /
    • 2017
  • Many researchers had examined the validity of using the high-to-low ratio between two fixed frequency band amplitudes (H/L-FFB) from the surface electromyography of a face and body as the first spectral index to assess muscle fatigue. Despite these studies, the disadvantage of this index is the lack of a criterion for choosing the optimal border frequency. We tested the potential of using the high-to-low ratio between two signal spectral moments (H/L-SSM), without fixed border frequencies, to evaluate muscle fatigue and predict endurance time ($T_{end}$), which was determined when the subject was exhausted and could no longer follow the fixed contraction cycle. Ten healthy participants performed five sets of voluntary isotonic contractions until they could only produce 10% and 20% of their maximum voluntary contraction (MVC). The $T_{end}$ values for all participants were $138{\pm}35s$ at 10% MVC and $69{\pm}20s$ at 20% MVC. Changes in conventional spectral indices, such as the mean power frequency (MPF), Dimitrov spectral index (DSI), H/L-FFB, and H/L-SSM, were extracted from surface EMG signals and were monitored using the initial slope computed every 10% of $T_{end}$ as a statistical indicator and compared as a predictor of $T_{end}$. Significant correlations were found between $T_{end}$ and the initial H/L-SSM slope as computed over 30% of $T_{end}$. In conclusion, initial H/L-SSM slope can be used to describe changes in the spectral content of surface EMG signals and can be employed as a good predictor of $T_{end}$ compared to that of conventional spectral indices.

Spectrum Requirements for the Future Development of IMT-2000 and Systems Beyond IMT-2000

  • Yoon Hyun-Goo;Chung Woo-Ghee;Jo Han-Shin;Lim Jae-Woo;Yook Jong-Gwan;Park Han-Kyu
    • Journal of Communications and Networks
    • /
    • v.8 no.2
    • /
    • pp.169-174
    • /
    • 2006
  • In this paper, the algorithm of a methodology for the calculation of spectrum requirements was implemented. As well, the influence of traffic distribution ratio among radio access technology groups, spectral efficiency, and flexible spectrum usage (FSU) margin was analyzed in terms of the spectrum requirements, with a view toward for future development of international mobile telecommunication (IMT)-2000 and systems beyond IMT-2000. The calculated spectrum requirement in the maximum spectral efficiency case is reduced by approximately 40% compared to a minimum spectral efficiency case. The effect of the distribution ratio on the required spectrum is smaller than the effect of the spectral efficiency. As the flexible spectrum usage margin increases by 1.0 dB, the total spectrum requirement decreases by 0.9 dB. The required spectrum for the market input parameter, ${\rho}$ = 0.5 is 801.63 MHz, while the required spectrum for ${\rho}$ = 1.0 is 6295.4 MHz. This is equivalent to an increase of 785.32 %.

Research on the Technology of Alternative Continuous Wide Spectral Spatial Heterodyne Spectrometer

  • Zhang, Wenli;Tian, Fengchun;Zhao, Zhenzhen;Song, An;Zhang, Li
    • Current Optics and Photonics
    • /
    • v.1 no.4
    • /
    • pp.295-307
    • /
    • 2017
  • An innovative system for the alternative continuous wide spectral spatial heterodyne spectrometer (ACWS-SHS) is proposed. The relationship between the ACWS-SHS and the wide spectral spatial heterodyne spectrometer (WS-SHS) at the resolution limit, the spectral range, the grating diffraction efficiency and the interference fringes contrast ratio has been analyzed theoretically. Through the comparison of the theoretical analysis and simulation results, it is found that the two systems for the WS-SHS and the ACWS-SHS have the same resolution limit and spectral range, which are ${\delta}{\sigma}$ and ${\sigma}_{01}$, while in the ACWS-SHS system the critical diffraction efficiency of echelle grating is 68.39% and the critical contrast ratio of interference fringes is 0.4135, which is much better than the performance of the WS-SHS system. Therefore, the ACWS-SHS reduces the high requirements for the precision of equipment and expands the application field of SHS effectively.

Spectral and Cepstral Analyses of Esophageal Speakers (식도발성화자 음성의 spectral & cepstral 분석)

  • Shim, Hee-Jeong;Jang, Hyo-Ryung;Shin, Hee-Baek;Ko, Do-Heung
    • Phonetics and Speech Sciences
    • /
    • v.6 no.2
    • /
    • pp.47-54
    • /
    • 2014
  • The purpose of this study was to analyze spectral versus cepstral measurements in esophageal speakers. The comparison between the measurements in thirteen male esophageal speakers was compared with the control group of thirteen normal speakers using the sustained vowel /a/. The main results can be summarized as below: (a) the CPP and L/H ratio of the esophageal group were significantly lower than those of the control group (b) the CPP was significantly correlated with the spectral parameters such as jitter, shimmer, NHR and VTI, and (c) the ROC analysis showed that the threshold of 10.25dB for the CPP achieved a good classification for esophageal speakers, with 100% perfect sensitivity and specificity. Thus, it was known that cepstral-based acoustic measures such as CPP, may be more reliable predictors than other spectral-based acoustic measures such as jitter and shimmer. And it was found that cepstral-based acoustic measures were effective in distinguishing esophageal voice quality from normal voice quality. This research will contribute to establishing a baseline related to speech characteristics in voice rehabilitation with laryngectomees.

Spectral Reflectivity on Geological Materials in Yangsan-Dongrae Fault Area (양산-동래 단층 지역의 암석에 대한 분광학적 연구)

  • 姜必鍾;智光薰
    • Korean Journal of Remote Sensing
    • /
    • v.3 no.1
    • /
    • pp.1-10
    • /
    • 1987
  • The study was performed to recognize the most preferable spectral chennels for discriminating geological materials using the portable radiometer. The portable radiometer covers the visible and short infrared regions from approximately 0.4 to 2.5 microns which are coincided with Landsat TM, and the rock samples used for the study are pyrophylites, andesites, granite, granodiorite and silicified sedimentary rocks which are collected in Yangsan-Dongrae fault area. The analysis of the rock sample provides a preliminary basis for determining the wavelength regions showing diagnostic spectral features and for discriminating hydrothermal altered rocks from the unaltered rocks. The measurement of spectral of spectral reflectance for the rock samples was carried out in the laboratory which environment condition such as temperature, light sources, and humidity are constant. The analysis of the measured data was based on correlation between the reflectance value of the rock samples, and the follow discriptions are output of the study. 1) Pyrophyllite shows absorption at 0.83 $\mu\textrm{m}$ due to the oxidation of pyrite, and absorption at 2.22 $\mu\textrm{m}$ due to OH. 2) The altered rocks have generally higher reflectance than the unaltered rocks. 3) The ratio mesurement of pyrophyllites shows strong absorption at band 5/6 and band 6/4(in Landsat TM 5/7, 7/4). The ratio 1/5(Landsat TM 1/5) may be useful to discriminate andesite from the granite.

Correlations of Rice Grain Yields to Radiometric Estimates of Canopy Biomass as a Function of Growth Stage, : Hand-Held Radiometric Measurements of Two of the Thematic Mapper's Spectral Bands Indicate that the Forecasting of Rice Grain Yields is Feasible at Early to Mid Canopy Development Stages

  • Yang, Young-Kyu;Miller, Lee-D.
    • Korean Journal of Remote Sensing
    • /
    • v.1 no.1
    • /
    • pp.63-87
    • /
    • 1985
  • Considerable experience has been reported on the use of spectral data to measure the canopy biomass of dryland grain crops and the use of these estimates to forecast subsequent grain yield. These basic procedures were retested to assess the use of the general process to forecasting grain yield for paddy rice. The use of the ratio of a multiband radiometer simulation of Thematic Mapper band 4(.76 to .90 .mu.m) divided by band 3 (.63 to .69 .mu.m) was tested to estimate the canopy biomass of paddy rice as a function of the stage of development of the rice. The correlation was found to be greatest (R = .94) at panicle differentiation about midway through the development cycle of the rice canopy. The use of this ratio of two spectral bands as a surrogate for canopy biomass was then tested for its correlation against final grain yield. These spectral estimates of canopy biomass produced the highest correlations with final grain yield (R = .87) when measured at the canopy development stages of panicle differentiation and heading. The impact of varying the amounts of supplemental nitrogen on the use of spectral measuremants of canopy biomass to estimate grain yield was also determined. The effect of the development of a significant amount of weed biomass in the rice canopy was also clearly detected.

Application of advanced spectral-ratio radon background correction in the UAV-borne gamma-ray spectrometry

  • Jigen Xia;Baolin Song;Yi Gu;Zhiqiang Li;Jie Xu;Liangquan Ge;Qingxian Zhang;Guoqiang Zeng;Qiushi Liu;Xiaofeng Yang
    • Nuclear Engineering and Technology
    • /
    • v.55 no.8
    • /
    • pp.2927-2934
    • /
    • 2023
  • The influence of the atmospheric radon background on the airborne gamma spectrum can seriously affect researchers' judgement of ground radiation information. However, due to load and endurance, unmanned aerial vehicle (UAV)-borne gamma-ray spectrometry is difficulty installing upward-looking detectors to monitor atmospheric radon background. In this paper, an advanced spectral-ratio method was used to correct the atmospheric radon background for a UAV-borne gamma-ray spectrometry in Inner Mongolia, China. By correcting atmospheric radon background, the ratio of the average count rate of U window in the anomalous radon zone (S5) to that in other survey zone decreased from 1.91 to 1.03, and the average uranium content in S5 decreased from 4.65 mg/kg to 3.37 mg/kg. The results show that the advanced spectral-ratio method efficiently eliminated the influence of the atmospheric radon background on the UAV-borne gamma-ray spectrometry to accurately obtain ground radiation information in uranium exploration. It can also be used for uranium tailings monitoring, and environmental radiation background surveys.

Eigenvalue Analysis of Double-span Timoshenko Beams by Pseudo spectral Method

  • Lee, Jin-Hee
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.9
    • /
    • pp.1753-1760
    • /
    • 2005
  • The pseudo spectral method is applied to the free vibration analysis of double-span Timoshenko beams. The analysis is based on the Chebyshev polynomials. Each section of the double-span beam has its own basis functions, and the continuity conditions at the intermediate support as well as the boundary conditions are treated separately as the constraints of the basis functions. Natural frequencies are provided for different thickness-to-length ratios and for different span ratios, which agree with those of Euler-Bernoulli beams when the thickness-to-length ratio is small but deviate considerably as the thickness-to-length ratio grows larger.

Spectrally Phase Coded Waveform Discrimination at 10 GHz for Narrow Band Optical CDMA within 100 GHz Spectral Window

  • Seo, Dong-Sun;Supradeepa, V.R.
    • Journal of the Optical Society of Korea
    • /
    • v.14 no.1
    • /
    • pp.28-32
    • /
    • 2010
  • We demonstrate binary spectral phase coded waveform discrimination at 10 GHz for narrow band optical code-division multiple-access (NB-OCDMA) via direct electrical detection without using any optical hard-limiter. Only 9 phase-locked, 10 GHz spaced, spectral lines within a 100 GHz spectral window are used for the phase coding. Considerably high contrast ratio of 5 between signal and multiuser access interference noise can be achieved for $4{\times}10\;G\;pulse/sec$ timing coordinated OCDMA at a simple electrical receiver with 50 GHz bandwidth.

Enhanced Spectral Hole Substitution for Improving Speech Quality in Low Bit-Rate Audio Coding

  • Lee, Chang-Heon;Kang, Hong-Goo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.29 no.3E
    • /
    • pp.131-139
    • /
    • 2010
  • This paper proposes a novel spectral hole substitution technique for low bit-rate audio coding. The spectral holes frequently occurring in relatively weak energy bands due to zero bit quantization result in severe quality degradation, especially for harmonic signals such as speech vowels. The enhanced aacPlus (EAAC) audio codec artificially adjusts the minimum signal-to-mask ratio (SMR) to reduce the number of spectral holes, but it still produces noisy sound. The proposed method selectively predicts the spectral shapes of hole bands using either intra-band correlation, i.e. harmonically related coefficients nearby or inter-band correlation, i.e. previous frames. For the bands that have low prediction gain, only the energy term is quantized and spectral shapes are replaced by pseudo random values in the decoding stage. To minimize perceptual distortion caused by spectral mismatching, the criterion of the just noticeable level difference (JNLD) and spectral similarity between original and predicted shapes are adopted for quantizing the energy term. Simulation results show that the proposed method implemented into the EAAC baseline coder significantly improves speech quality at low bit-rates while keeping equivalent quality for mixed and music contents.