• Title/Summary/Keyword: Spectral studies

Search Result 691, Processing Time 0.029 seconds

Analysis of Land Cover Change in the Waterfront Area of Taehwa River using Hyperspectral Image Information (초분광 영상정보를 이용한 태화강 수계지역의 토지피복 변화분석)

  • KIM, Yong-Suk
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.24 no.1
    • /
    • pp.12-25
    • /
    • 2021
  • Land cover maps are used in various fields in urban expansion and development. This study analyzed the amount of land cover change over time using multi-sensor information, focusing on the waterfront area of the Taehwa River. In order to apply high-accuracy aerial hyperspectral images, patterns with Field-spectral were reviewed and compared with time series Digital map. The hyperspectral image was set as 13 land cover grades, and the time series digital map was classified into 7 and the waterfront area was classified into 5-6 grades and analyzed. As a result of analysis of the change in land cover of the digital map from the 1990s to 2010, it was found that forest areas were rapidly decreasing and Farmland and grassland were becoming urban. As for the land cover change(2010~2019) in the waterfront area(set 500m) analyzed through hyperspectral images, it was found that Farmland(1.4㎢), Forest(1.0㎢), and grassland (0.8㎢) were converted into urbanized and dried areas, and urbanization was accelerating around the Taehwa River waterfront. Recently, a lot of research has been conducted on the production of land cover maps using high-precision satellite images and aerial hyperspectral images, so it is expected that more detailed and precise land cover maps can be produced and utilized.

Research Trends in Induced Polarization Exploration in Korea (국내 유도분극 탐사의 연구동향)

  • Park, Samgyu
    • Geophysics and Geophysical Exploration
    • /
    • v.24 no.4
    • /
    • pp.202-208
    • /
    • 2021
  • Induced polarization (IP) was first published in a Korean academic journal in 1973, and it was soon applied to coal and metal ore exploration. Then, in universities and research institutes, IP modeling studies using the finite element approach and experimental studies on IP responses for artificial samples were conducted. In the mid-1980s, the spectral IP (SIP) measurement module was introduced to Korea, and physical scale modeling and inversion approaches were developed. Due to the decline of the mineral resource industry, this method was not actively applied. However, the SIP method was not applied In the 1990s, IP exploration was applied in the investigation of hydrothermal deposits of sulfide minerals and bentonite mineralization zones, as well as to areas where the groundwater was contaminated by intruding seawater. In the 2000s, three-dimensional inversion of the IP approach was developed, and high-precision geophysical exploration was required to secure domestic and overseas mineral resources, so SIP experiments on rock samples and approaches for field exploration were developed. The SIP approach was proven useful for the exploration of metal deposits containing sulfide minerals by applying it to explore the mineralization zone of gold-silver deposits in the Haenam region. The IP method is considered to be effective in exploring critical minerals (lithium, cobalt, and nickel) in high-tech industries. It also is expected to be useful for environmental and geotechnical investigations.

Extraction Method of Damaged Area by Pinetree Pest(Bursaphelenchus Xylophilus) using High Resolution IKONOS Image (고해상도 IKONOS 영상을 활용한 소나무재선충 피해지역 추출 기법)

  • Jo, Myung-Hee;Kim, Joon-Bum;Oh, Jeong-Soo;Lee, Kwang-Jae
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.4 no.4
    • /
    • pp.72-78
    • /
    • 2001
  • In this study, high spatial resolution of IKONOS 1m image and Red(0.63~0.69) band, NIR(0.76~0.90) band in 4m image, which are the same wavelength range as Landsat TM band 3, 4, were used for extraction of the front areas of B. Xylophilus in Geuje island where is located in southern part of Korea. Moreover, since they have higher spatial resolutions than Landsat TM, they have been used for lots of studies in the field of forest and vegetation. In the results, it was validated by GPS field survey, spectral histogram analysis of IKONOS NIR band was significant available method for extracting the front areas of B. Xylophilus. In this study, 15 points were verified as real damaged trees of 22 sample points extracted from GPS field survey. This study was not only extracted the damaged trees by B. Xylophilus but also suggested the possibility of using IKONOS images for the study on the forest damages by any disease and insect pests.

  • PDF

IE-SASW Method for Nondestructive Testing of Geotechnical Concrete Structure : I. Numerical Studies (콘크리트 지반구조물의 비파괴검사를 위한 충격반향-표면파병행기법 : I. 수치해석적 연구)

  • 김동수;서원석;이광명
    • Journal of the Korean Geotechnical Society
    • /
    • v.18 no.4
    • /
    • pp.257-270
    • /
    • 2002
  • The Impact-Echo(IE) method has been used to evaluate the integrity of concrete structures. In this method, the P-wave velocity of concrete is a crucial parameter in determining the thickness of concrete lining, the location of cracks or other defects. In many field applications of the IE method, the P-wave velocity is obtained by testing the core or the portion of a structure where the exact thickness is known. Occasionally, however, the core can not be obtained in specific structures and the P-wave velocity determined from core testing may not be a representative value of the structure. This study introduces an IE-SASW method that may determine the P-wave velocity on a surface of each testing area using the Spectral Analysis of Surface Wave (SASW) method. Results obtained from numerical studies are presented in this paper (Part I), and results obtained from experimental studies are presented in the companion paper (Part II). In this paper, numerical analyses using ABAQUS were carried out to investigate the effectiveness and the limitations of the IE-SASW method.

A Study on the Frequency Allocation to the Maritime Mobile Satellite Services in the X band under ITU-R Activities (X 대역 해상이동위성업무 추가 주파수 분배를 위한 ITU-R 표준화 연구 동향 및 대응 방안 연구)

  • Oh, Dae-sub;Chang, Dae-Ig
    • Journal of Satellite, Information and Communications
    • /
    • v.10 no.3
    • /
    • pp.127-130
    • /
    • 2015
  • ITU-R has conducted a studies for the frequency allocation to the maritime mobile satellite service (MMSS) in the 7375 - 7750 / 8025 - 8400 MHz under WRC-15 agenda item 1.9.2. In order to allocate a certain frequency bands to the new service, compatibility between new service and the existing services is ensured taking into account protecting the existing services form interference of new service. In this paper, we present current studies results of the frequency sharing studies between new allocation to MMSS and the existing services in the ITU-R. In addition, some proposals for allocating the 7/8 GHz frequency bands to MMSS are also considered for efficient spectral utilization with respect to preparing WRC-15.

New method for generation of artificial ground motion by a nonstationary Kanai-Tajimi model and wavelet transform

  • Amiri, G. Ghodrati;Bagheri, A.;Fadavi, M.
    • Structural Engineering and Mechanics
    • /
    • v.26 no.6
    • /
    • pp.709-723
    • /
    • 2007
  • Considering the vast usage of time-history dynamic analyses to calculate structural responses and lack of sufficient and suitable earthquake records, generation of artificial accelerograms is very necessary. The main target of this paper is to present a novel method based on nonstationary Kanai-Tajimi model and wavelet transform to generate more artificial earthquake records, which are compatible with target spectrum. In this regard, the generalized nonstationary Kanai-Tajimi model to include the nonstationary evaluation of amplitude and dominant frequency of ground motion and properties of wavelet transform is used to generate ground acceleration time history. Application of the method for El Centro 1940 earthquake and two Iranian earthquakes (Tabas 1978 and Manjil 1990) is presented. It is shown that the model and identification algorithms are able to accurately capture the nonstationary features of these earthquake accelerograms. The statistical characteristics of the spectral response of the generated accelerograms are compared with those for the actual records to demonstrate the effectiveness of the method. Also, for comparison of the presented method with other methods, the response spectra of the synthetic accelerograms compared with the models of Fan and Ahmadi (1990) and Rofooei et al. (2001) and it is shown that the response spectra of the synthetic accelerograms with the method of this paper are close to those of actual earthquakes.

Analysis of Land Cover Classification and Pattern Using Remote Sensing and Spatial Statistical Method - Focusing on the DMZ Region in Gangwon-Do - (원격탐사와 공간통계 기법을 이용한 토지피복 분류 및 패턴 분석 - 강원도 DMZ일원을 대상으로 -)

  • NA, Hyun-Sup;PARK, Jeong-Mook;LEE, Jung-Soo
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.18 no.4
    • /
    • pp.100-118
    • /
    • 2015
  • This study established a land-cover classification method on objects using satellite images, and figured out distributional patterns of land cover according to categories through spatial statistics techniques. Object-based classification generated each land cover classification map by spectral information, texture information, and the combination of the two. Through assessment of accuracy, we selected optimum land cover classification map. Also, to figure out spatial distribution pattern of land cover according to categories, we analyzed hot spots and quantified them. Optimal weight for an object-based classification has been selected as the Scale 52, Shape 0.4, Color 0.6, Compactness 0.5, Smoothness 0.5. In case of using the combination of spectral information and texture information, the land cover classification map showed the best overall classification accuracy. Particularly in case of dry fields, protected cultivation, and bare lands, the accuracy has increased about 12 percent more than when we used only spectral information. Forest, paddy fields, transportation facilities, grasslands, dry fields, bare lands, buildings, water and protected cultivation in order of the higher area ratio of DMZ according to categories. Particularly, dry field sand transportation facilities in Yanggu occurred mainly in north areas of the civilian control line. dry fields in Cheorwon, forest and transportation facilities in Inje fulfilled actively in south areas of the civilian control line. In case of distributional patterns according to categories, hot spot of paddy fields, dry fields and protected cultivation, which is related to agriculture, was distributed intensively in plains of Yanggu and in basin areas of Cheorwon. Hot spot areas of bare lands, waters, buildings and roads have similar distribution patterns with hot spot areas related to agriculture, while hot spot areas of bare lands, water, buildings and roads have different distributional patterns with hot spot areas of forest and grasslands.

The Study of Land Surface Change Detection Using Long-Term SPOT/VEGETATION (장기간 SPOT/VEGETATION 정규화 식생지수를 이용한 지면 변화 탐지 개선에 관한 연구)

  • Yeom, Jong-Min;Han, Kyung-Soo;Kim, In-Hwan
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.13 no.4
    • /
    • pp.111-124
    • /
    • 2010
  • To monitor the environment of land surface change is considered as an important research field since those parameters are related with land use, climate change, meteorological study, agriculture modulation, surface energy balance, and surface environment system. For the change detection, many different methods have been presented for distributing more detailed information with various tools from ground based measurement to satellite multi-spectral sensor. Recently, using high resolution satellite data is considered the most efficient way to monitor extensive land environmental system especially for higher spatial and temporal resolution. In this study, we use two different spatial resolution satellites; the one is SPOT/VEGETATION with 1 km spatial resolution to detect coarse resolution of the area change and determine objective threshold. The other is Landsat satellite having high resolution to figure out detailed land environmental change. According to their spatial resolution, they show different observation characteristics such as repeat cycle, and the global coverage. By correlating two kinds of satellites, we can detect land surface change from mid resolution to high resolution. The K-mean clustering algorithm is applied to detect changed area with two different temporal images. When using solar spectral band, there are complicate surface reflectance scattering characteristics which make surface change detection difficult. That effect would be leading serious problems when interpreting surface characteristics. For example, in spite of constant their own surface reflectance value, it could be changed according to solar, and sensor relative observation location. To reduce those affects, in this study, long-term Normalized Difference Vegetation Index (NDVI) with solar spectral channels performed for atmospheric and bi-directional correction from SPOT/VEGETATION data are utilized to offer objective threshold value for detecting land surface change, since that NDVI has less sensitivity for solar geometry than solar channel. The surface change detection based on long-term NDVI shows improved results than when only using Landsat.

An Analysis on the Usability of Unmanned Aerial Vehicle(UAV) Image to Identify Water Quality Characteristics in Agricultural Streams (농업지역 소하천의 수질 특성 파악을 위한 UAV 영상 활용 가능성 분석)

  • Kim, Seoung-Hyeon;Moon, Byung-Hyun;Song, Bong-Geun;Park, Kyung-Hun
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.22 no.3
    • /
    • pp.10-20
    • /
    • 2019
  • Irregular rainfall caused by climate change, in combination with non-point pollution, can cause water systems worldwide to suffer from frequent eutrophication and algal blooms. This type of water pollution is more common in agricultural prone to water system inflow of non-point pollution. Therefore, in this study, the correlation between Unmanned Aerial Vehicle(UAV) multi-spectral images and total phosphorus, total nitrogen, and chlorophyll-a with indirect association of algal blooms, was analyzed to identify the usability of UAV image to identify water quality characteristics in agricultural streams. The analysis the vegetation index Normalized Differences Index (NDVI), the Normalized Differences Red Edge(NDRE), and the Chlorophyll Index Red Edge(CIRE) for the detection of multi-spectral images and algal blooms collected from the target regions Yang cheon and Hamyang Wicheon. The analysis of the correlation between image values and water quality analysis values for the water sampling points, total phosphorus at a significance level of 0.05 was correlated with the CIRE(0.66), and chlorophyll-a showed correlation with Blue(-0.67), Green(-0.66), NDVI(0.75), NDRE (0.67), CIRE(0.74). Total nitrogen was correlated with the Red(-0.64), Red edge (-0.64) and Near-Infrared Ray(NIR)(-0.72) wavelength at the significance level of 0.05. The results of this study confirmed a significant correlations between multi-spectral images collected through UAV and the factors responsible for water pollution, In the case of the vegetation index used for the detection of algal bloom, the possibility of identification of not only chlorophyll-a but also total phosphorus was confirmed. This data will be used as a meaningful data for counterplan such as selecting non-point pollution apprehensive area in agricultural area.

Analysis of Chlorophyll-a and Algal Bloom Indices using Unmanned Aerial Vehicle based Multispectral Images on Nakdong River (무인항공기 기반 다중분광영상을 이용한 낙동강 Chlorophyll-a 및 녹조발생지수 분석)

  • KIM, Heung-Min;CHOE, Eunyoung;JANG, Seon-Woong
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.25 no.1
    • /
    • pp.101-119
    • /
    • 2022
  • Existing algal bloom monitoring is based on field sampling, and there is a limit to understanding the spatial distribution of algal blooms, such as the occurrence and spread of algae, due to local investigations. In this study, algal bloom monitoring was performed using an unmanned aerial vehicle and multispectral sensor, and data on the distribution of algae were provided. For the algal bloom monitoring site, data were acquired from the Mulgeum·Mae-ri site located in the lower part of the Nakdong River, which is the areas with frequent algal bloom. The Chlorophyll-a(Chl-a) value of field-collected samples and the Chl-a estimation formula derived from the correlation between the spectral indices were comparatively analyzed. As a result, among the spectral indices, Maximum Chlorophyll Index (MCI) showed the highest statistical significance(R2=0.91, RMSE=8.1mg/m3). As a result of mapping the distribution of algae by applying MCI to the image of August 05, 2021 with the highest Chl-a concentration, the river area was 1.7km2, the Warning area among the indicators of the algal bloom warning system was 1.03km2(60.56%) and the Algal Bloom area occupied 0.67km2(39.43%). In addition, as a result of calculating the number of occurrence days in the area corresponding to the "Warning" in the images during the study period (July 01, 2021~November 01, 2021), the Chl-a concentration above the "Warning" level was observed in the entire river section from 12 to 19 times. The algal bloom monitoring method proposed in this study can supplement the limitations of the existing algal bloom warning system and can be used to provide information on a point-by-point basis as well as information on a spatial range of the algal bloom warning area.