• Title/Summary/Keyword: Spectral leakage

Search Result 41, Processing Time 0.023 seconds

Low-Frequency Electromagnetic Leakage Signal Analysis According to Fundamental Operations of Smartphones (스마트폰 기본 동작 모드에 따른 저주파 대역 누설 전자파 신호 특성 분석)

  • Lee, Young-Jun;Park, Heesun;Kwon, YoungHyoun;Lee, Jaeki;Choi, Ji-Eun;Cho, Sangwoo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.41 no.9
    • /
    • pp.1108-1119
    • /
    • 2016
  • This paper presents the spectral analysis and radiation pattern of low-frequency electromagnetic(EM) leakage signals according to the fundamental operations of smartphones. The EM leakage signals generated by the activation of four I/O sensor modules such as a touch-screen, a camera, a microphone and a speaker are captured by the commercial near-field magnetic probe with 1cm spatial resolution. The analysis results show that the leakage of the EM wave occurs strongly around the activated I/O sensor modules, AP(Application Processor) and memory modules. Also, the distinguishable frequency characteristic is shown in each spectrum of EM leakage signals.

Wavelet-Based Flashover Prediction Using High-Frequency Components (고주파 성분을 사용한 웨이블렛 기반 섬락 예측)

  • Song, Young-Chul
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.4
    • /
    • pp.759-761
    • /
    • 2010
  • In order to monitor operating performance of contaminated outdoor insulators, a wavelet-based flashover prediction method is proposed. In most cases, the low-frequency components, namely, fundamental, $3^{rd}$, and $5^{th}$ harmonic components have been mainly used for the sake of the spectral analysis of the leakage current. However, in this paper, the detail coefficients of wavelet transform representing high-frequency components are used as important information to predict a flashover in the contaminated insulator. Experimental results verify that the proposed method has a superior capability for flashover prediction.

DFT-Based Channel Estimation Scheme for the Uplink of LTE-A Systems (LTE-A 시스템 상향링크를 위한 DFT 기반 채널추정 기법)

  • Kim, Kyung Jun;Choi, Kyung Jun;Kim, Kwang Soon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.2
    • /
    • pp.307-309
    • /
    • 2015
  • In this letter, a DFT-based channel estimator is proposed for the uplink of LTE-A systems to solve the leakage and enhance the spectral efficiency. It is confirmed that the proposed estimator can significantly improve user and cell spectral efficiencies compared to conventional estimators.

Frequency Characteristics of Fluctuating Velocity According to Flow Rates in a Tip Leakage Vortex and a Wake Flow in an Axial Flow Fan (축류 홴의 익단누설와류 및 후류에서 유량에 따른 변동속도의 주파수 특성)

  • Jang, Choon-Man;Kim, Kwang-Yong;Fukano, Tohru
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.2
    • /
    • pp.181-188
    • /
    • 2004
  • The frequency characteristics in an axial flow fan operating at a design and three off-design operating conditions have been investigated by measuring the velocity fluctuation of a tip leakage vortex and a wake flow. Two hot-wire probe sensors rotating with the fan rotor. a fixed and a moving ones, were introduced to obtain a cross-correlation coefficient between two sensors as well as the fluctuating velocity. The results show that the spectral peaks due to the fluctuating velocity near the rotor tip are mainly observed in the reverse flow region of higher flow rates than those in the peak pressure operating condition. However, no peak frequency presents near the rotor tip for near stall condition. Detailed wake flow just downstream of the rotor blade was also measured by the rotating hot-wire sensor. The peak frequency of a high velocity fluctuation due to Karman vortex shedding in the wake region is mainly observed at the higher flow rate condition than that in the design point.

MUSIC-based Diagnosis Algorithm for Identifying Broken Rotor Bar Faults in Induction Motors Using Flux Signal

  • Youn, Young-Woo;Yi, Sang-Hwa;Hwang, Don-Ha;Sun, Jong-Ho;Kang, Dong-Sik;Kim, Yong-Hwa
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.2
    • /
    • pp.288-294
    • /
    • 2013
  • The diagnosis of motor failures using an on-line method has been the aim of many researchers and studies. Several spectral analysis techniques have been developed and are used to facilitate on-line diagnosis methods in industry. This paper discusses the first application of a motor flux spectral analysis to the identification of broken rotor bar (BRB) faults in induction motors using a multiple signal classification (MUSIC) technique as an on-line diagnosis method. The proposed method measures the leakage flux in the radial direction using a radial flux sensor which is designed as a search coil and is installed between stator slots. The MUSIC technique, which requires fewer number of data samples and has a higher detection accuracy than the traditional fast Fourier transform (FFT) method, then calculates the motor load condition and extracts any abnormal signals related to motor failures in order to identify BRB faults. Experimental results clearly demonstrate that the proposed method is a promising candidate for an on-line diagnosis method to detect motor failures.

A standardized procedure on building spectral library for hazardous chemicals mixed in river flow using hyperspectral image (초분광 영상을 활용한 하천수 혼합 유해화학물질 표준 분광라이브러리 구축 방안)

  • Gwon, Yeonghwa;Kim, Dongsu;You, Hojun
    • Journal of Korea Water Resources Association
    • /
    • v.53 no.10
    • /
    • pp.845-859
    • /
    • 2020
  • Climate change and recent heat waves have drawn public attention toward other environmental issues, such as water pollution in the form of algal blooms, chemical leaks, and oil spills. Water pollution by the leakage of chemicals may severely affect human health as well as contaminate the air, water, and soil and cause discoloration or death of crops that come in contact with these chemicals. Chemicals that may spill into water streams are often colorless and water-soluble, which makes it difficult to determine whether the water is polluted using the naked eye. When a chemical spill occurs, it is usually detected through a simple contact detection device by installing sensors at locations where leakage is likely to occur. The drawback with the approach using contact detection sensors is that it relies heavily on the skill of field workers. Moreover, these sensors are installed at a limited number of locations, so spill detection is not possible in areas where they are not installed. Recently hyperspectral images have been used to identify land cover and vegetation and to determine water quality by analyzing the inherent spectral characteristics of these materials. While hyperspectral sensors can potentially be used to detect chemical substances, there is currently a lack of research on the detection of chemicals in water streams using hyperspectral sensors. Therefore, this study utilized remote sensing techniques and the latest sensor technology to overcome the limitations of contact detection technology in detecting the leakage of hazardous chemical into aquatic systems. In this study, we aimed to determine whether 18 types of hazardous chemicals could be individually classified using hyperspectral image. To this end, we obtained hyperspectral images of each chemical to establish a spectral library. We expect that future studies will expand the spectral library database for hazardous chemicals and that verification of its application in water streams will be conducted so that it can be applied to real-time monitoring to facilitate rapid detection and response when a chemical spill has occurred.

Study on Improving Hyperspectral Target Detection by Target Signal Exclusion in Matched Filtering (초분광 영상의 표적신호 분리에 의한 Matched Filter의 표적물질 탐지 성능 향상 연구)

  • Kim, Kwang-Eun
    • Korean Journal of Remote Sensing
    • /
    • v.31 no.5
    • /
    • pp.433-440
    • /
    • 2015
  • In stochastic hyperspectral target detection algorithms, the target signal components may be included in the background characterization if targets are not rare in the image, causing target leakage. In this paper, the effect of target leakage is analysed and an improved hyperspectral target detection method is proposed by excluding the pixels which have similar reflectance spectrum with the target in the process of background characterization. Experimental results using the AISA airborne hyperspectral data and simulated data with artificial targets show that the proposed method can dramatically improve the target detection performance of matched filter and adaptive cosine estimator. More studies on the various metrics for measuring spectral similarity and adaptive method to decide the appropriate amount of exclusion are expected to increase the performance and usability of this method.

A Low Distortion and Low Dissipation Power Amplifier with Gate Bias Control Circuit for Digital/Analog Dual-Mode Cellular Phones

  • Maeng, Sung-Jae;Lee, Chang-Seok;Youn, Kwang-Jun;Kim, Hae-Cheon;Mun, Jae-Kyung;Lee, Jae-Jin;Pyun, Kwang-Eui
    • ETRI Journal
    • /
    • v.19 no.2
    • /
    • pp.35-47
    • /
    • 1997
  • A power amplifier operating at 3.3 V has been developed for CDMA/AMPS dual-mode cellular phones. It consists of linear GaAs power MESFET's, a new gate bias control circuit, and an output matching circuit which prevents the drain terminal of the second MESF from generating the harmonics. The relationship between the intermodulation distortion and the spectral regrowth of the power amplifier has been investigated with gate bias by using the two-tone test method and the adjacent channel leakage power ratio (ACPR) method of CDMA signals. The dissipation power of the power amplifier with a gate bias control circuit is minimized to below 1000 mW in the range of the low power levels while satisfying the ACPR of less than -26 dBc for CDMA mode. The ACPR of the power amplifier is measured to be -33 dBc at a high output power of 26 dBm.

  • PDF

Improved Correlation Identification of Subsurface Using All Phase FFT Algorithm

  • Zhang, Qiaodan;Hao, Kaixue;Li, Mei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.2
    • /
    • pp.495-513
    • /
    • 2020
  • The correlation identification of the subsurface is a novel electrical prospecting method which could suppress stochastic noise. This method is increasingly being utilized by geophysicists. It achieves the frequency response of the underground media through division of the cross spectrum of the input & output signal and the auto spectrum of the input signal. This is subject to the spectral leakage when the cross spectrum and the auto spectrum are computed from cross correlation and autocorrelation function by Discrete Fourier Transformation (DFT, "To obtain an accurate frequency response of the earth system, we propose an improved correlation identification method which uses all phase Fast Fourier Transform (APFFT) to acquire the cross spectrum and the auto spectrum. Simulation and engineering application results show that compared to existing correlation identification algorithm the new approach demonstrates more precise frequency response, especially the phase response of the system under identification.

Initial-phase Sensitivity Analysis of Harmonic Measurements via Windowed DFT

  • Song, Shuping;Wang, Fuzong;Cheng, Guozhu
    • Transactions on Electrical and Electronic Materials
    • /
    • v.15 no.4
    • /
    • pp.182-188
    • /
    • 2014
  • When the windowed DFT algorithm is applied in harmonic measurements, the problem of initial-phase sensitivity will be encountered, this has an effect on harmonic amplitude accuracy. In this paper, the origin of initial-phase sensitivity is analyzed and the main factors that influence the level of initial-phase sensitivity are demonstrated. A method of reducing initial-phase sensitivity is proposed to increase the stability of harmonic measurements. We found that initial-phase sensitivity is determined by the side lobe peak level of the window functions when synchronous deviation is fixed. In addition, increasing the length of the time recorded can be used to remove initial-phase sensitivity. The correctness and validity of our conclusions have been confirmed through numerical results and field tests.