• Title/Summary/Keyword: Spectral interference

Search Result 297, Processing Time 0.027 seconds

A Joint SD-MRC Method for Downlink Performance Improvement at Coverage Boundaries of Cellular Systems (셀룰러 시스템의 셀 경계에서의 하향 링크 성능 향상을 위한 Joint SD-MRC 수신 방식)

  • Lee, Sang-Dae;Chang, Jae-Won;Sung, Won-Jin
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.19 no.5
    • /
    • pp.506-514
    • /
    • 2008
  • At coverage boundaries of cellular systems including the recent WiBro standard which operate with full frequency reuse for increased spectral efficiency, interference signals from the base stations(BS) of adjacent cells degrade the receiver performance. In this paper, a detection method for multiple-antenna mobile stations(MS) is proposed for downlink performance improvement at coverage boundaries of cellular systems. For the performance verification, we obtain the probability density function(pdf) of the effective signal-to-interference and noise ratio(SINR) according to the variation of the interference signals from adjacent cells as well as the number of MS antennas, and calculate the transmission efficiency. We also verify the performance of proposed method with simulation results, to demonstrate a significant performance improvement is achieved over the maximal ratio combining(MRC) and spatial demultiplexing(SD) methods in terms of the effective SINR and the spectral efficiency.

Adaptive Frequency Resource Allocation For FFR Based Femtocell Network Environment (FFR 기반의 Femtocell 네트워크를 위한 적응 주파수 자원 할당 방법)

  • Bae, Won-Geon;Kim, Jeong-Gon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.7B
    • /
    • pp.505-516
    • /
    • 2012
  • According to distribute of resource of macro cell and reduce distance between transmitter and receiver, Femto cell system is promising to provide costeffective strategy for high data traffic and high spectral efficient services in future wireless cellular system environment. However, the co-channel operation with existing Macro networks occurs some severe interference between Macro and Femto cells. Hence, the interference cancellation or management schemes are imperative between Macro and Femto cells in order to avoid the decrease of total cell throughput. First, we briefly investigate the conventional resource allocation and interference cancellation scheme between Macro and Femto cells. So we found that cell throughput and frequency reuse ware decreased Then, we propose an adaptive resource allocation scheme based on the distribution of Femtocell traffic in order to increase the cell throughput and also maximize the spectral efficiency over the FFR (Fractional Frequency Reuse) based conventional resource allocation schemes. Simulation Results show that the proposed scheme attains a bit similar SINR (Signal to Interference Noise Ratio) distribution but achieves much higher total cell throughput performance distribution over the conventional resource allocation schemes for FFR and future IEEE 802.16m based Femtocell network environment.

Characteristics of Compensation for Distorted WDM Channel with Inter-channel Interference due to Four-Wave Mixing (4-광파 혼합에 의한 채널 간섭이 존재하는 왜곡된 WDM 채널의 보상 특성)

  • 이성렬;손성찬;방효창;김지웅;조경룡
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.8 no.6
    • /
    • pp.1234-1242
    • /
    • 2004
  • In this paper, the characteristics of compensation for interferenced mid-channel signal by neighbor channels through four-wave mixing (FWM) process dominantly is investigated as a function of channel input power, fiber dispersion coefficient and transmission length in WDM system with equally spaced channels. The compensation method used in this research is mid-span spectral inversion(MSSI). The highly nonlinear dispersion shifted fiber (HNL-DSF) is used as a nonlinear medium of optical phase conjugator (OPC) in order to compensate wideband WDM signals. First, we confirmed that the effect of FWM on channel interference is gradually reduced as fiber dispersion coefficient becomes gradually smaller, independent of signal format. And, we confirmed that RZ is better than NRZ as a modulation format for transmitting high power channel with allowable reception quality. But realization of flexible WDM systems regardless of channel number variation is possible by using NRZ rather than RZ format.

A Downlink Spectral Efficiency Improvement Scheme Using Intercell Cooperative Spatial Multiplexing and Beamforming (셀 간 협조적 공간 다중화 및 빔포밍을 이용한 하향링크 전송 효율 증대 방안)

  • Chang, Jae-Won;Jin, Gwy-Un;Sung, Won-Jin
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.45 no.7
    • /
    • pp.45-52
    • /
    • 2008
  • In typical cellular systems using frequency reuse scheme, the terminal suffers a performance degradation due to the intercell interference signals from adjacent cells as the terminal moves toward the cell boundary. In this paper, a signal transmission and reception scheme which achieve spatial multiplexing and beamforming gain from a distributed MIMO (multiple-input multiple-output) channel using multiple-antenna terminal is proposed for the spectral efficiency enhancement in a multi-cell downlink environment, when geographically separated base stations cooperatively transmit signals. In particular, we analyze the effective signal-to-interference ratio and spectral efficiency of the proposed scheme for different frequency reuse patterns and for varying numbers of receive antennas, and compare with the performance of the MRC (maximal ratio combining) reception scheme in typical cellular systems. We evaluate the amount of transmission efficiency of the scheme by comparing the performance near the cell boundary where the strong intercell interference is experienced.

The characteristics of optical CDMA systems using PN codes and FBGs for ultra-fast optical access networks (초고속 광 가입자망 구축을 위한 PN 부호와 FBG를 이용한 광 CDMA의 특성분석)

  • 김봉규;연영희;김병휘;박상조
    • Korean Journal of Optics and Photonics
    • /
    • v.13 no.6
    • /
    • pp.501-505
    • /
    • 2002
  • We have numerically analysed the effects of the light sourer spectral power distortion in an optical CDMA system using PN codes and FBGI for ultra-fast multi-access optical networks. The interference between two CDMA channels decreases with an increase in the code length and the .simultaneous access number is equal to the code length in the region of 0 to 15% spectral power distortion. As a result, the spectral power distortion with optical spectrum is very important in designing the optical CDMA systems.

Error Performance Analysis of DS-CDMA System in Wireless Channel

  • Kang, Heau-Jo
    • Journal of information and communication convergence engineering
    • /
    • v.1 no.1
    • /
    • pp.1-5
    • /
    • 2003
  • This paper discusses the spectral efficiency and performance of asynchronous direct sequency spread spectrum multiple access systems strict bandwidth limitation by Nyquist filtering. The signal to noise plus interference ratio(SNIR) at the output from the correlation receiver is derived analytically taking the cross correlation characteristics of spreading sequences into account, and also an approximated SNIR of a simple form is presented for the systems employing Gold sequences. Based on the analyzed result of SNIR, bit error rate performance and spectral efficiency are also estimated. and at last, we analyzed improvement rate using RS, convolution as a method for improving functions.

Frequency Planning and Interference Rejection with Co-Channel Dual-Polarization Technique in B-WLL Applications (코채널 이중편파 기술을 적용한 B-WLL 의 주파수 배치 및 채널간섭 제거기에 대한 연구)

  • 이재원;서경환;정한욱
    • Proceedings of the IEEK Conference
    • /
    • 1999.11a
    • /
    • pp.821-824
    • /
    • 1999
  • In this article, as a way of pursuing high spectral efficiency and flexible cell planning, co-channel dual-polarization techniques are suggested for B-WLL applications. It provides a double down stream capacity compared with conventional scheme and also makes some flexibility in cell planning. In order to implement co-channel B-WLL system, some frequency plans, interference cancellation methods, and system block diagrams are presented here.

  • PDF

Analysis of Interference Impacts by UWB System to WiBro Systems

  • Yoon Young-Keun;Jin Rong-Reon;Kim Kyung-Seok;Choi Ik-Guen
    • Journal of electromagnetic engineering and science
    • /
    • v.5 no.4
    • /
    • pp.197-203
    • /
    • 2005
  • This paper evaluates the impacts for interference from UWB system, and determines the tolerable UWB power spectral density(PSD) to the new deploying system, which is called a portable internet service in Korea. It also proposes the interference analysis scheme that can evaluate the characteristics of the performance degradation for portable internet service according to the emission power of UWB systems at the specified frequency bands. The proposed scheme includes a multi-rate and data service environments to deal with interference to portable internet service. It is obtained from simulation results that the transmission PSD of UWB systems should be rigidly restricted by less approximately 10 ${\~}$ 20 dB than FCC provisional limit for coexistence between UWB and portable internet service already allocated at 2.3 GHz frequency bands in Korea.

Novel Digital Cancelation Method in Presence of Harmonic Self-Interference

  • Ju, Hyungsik;Gwak, Donghyuk;Lee, Yuro;Kim, Tae-Joong
    • ETRI Journal
    • /
    • v.39 no.2
    • /
    • pp.245-254
    • /
    • 2017
  • In-band full-duplex (IFD) communication has recently attracted a great deal of interest because it potentially provides a two-fold spectral efficiency increase over half-duplex communications. In this paper, we propose a novel digital self-interference cancelation (DSIC) algorithm for an IFD communication system in which two nodes exchange orthogonal frequency-division multiplexing (OFDM) symbols. The proposed DSIC algorithm is based on the least-squares estimation of a self-interference (SI) channel with block processing of multiple OFDM symbols, in order to eliminate the fundamental and harmonic components of SI induced through the practical radio frequency devices of an IFD transceiver. In addition, the proposed DSIC algorithm adopts discrete Fourier transform processing of the estimated SI channel to further enhance its cancelation performance. We provide a minimum number of training symbols to estimate the SI channel effectively. The evaluation results show that our proposed DSIC algorithm outperforms a conventional algorithm.

An OCDMA Scheme to Reduce Multiple Access Interference and Enhance Performance for Optical Subscriber Access Networks

  • Park, Sang-Jo;Kim, Bong-Kyu;Kim, Byoung-Whi
    • ETRI Journal
    • /
    • v.26 no.1
    • /
    • pp.13-20
    • /
    • 2004
  • We propose a new optical code division multiple access (OCDMA) scheme for reducing multiple access interference (MAI) and enhancing performance for optical subscriber access networks using modified pseudorandom noise (PN)-coded fiber Bragg gratings with bipolar OCDMA decoders. Through the bipolar OCDMA decoder and the modified PN codes, MAI among users is effectively depressed. As the data are encoded either by a unipolar signature sequence of the modified PN code or its complement according to whether the data bit is 1 or 0, the bit error ratio (BER) can be more improved with the same signal to interference plus noise ratio over the conventional on-off shift keying-based OCDMA system. We prove by numerical analysis that the BER of the proposed bipolar OCDMA system is better than the conventional unipolar OCDMA system. We also analyze the spectral power distortion effects of the broadband light source.

  • PDF