• Title/Summary/Keyword: Spectral filtering

Search Result 127, Processing Time 0.023 seconds

Evaluation on Spectral Analysis in ALOS-2 PALSAR-2 Stripmap-ScanSAR Interferometry (ALOS-2 Stripmap-ScanSAR 위상간섭기법에서의 스펙트럼 분석 평가)

  • Park, Seo-Woo;Jung, Seong-Woo;Hong, Sang-Hoon
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.2_2
    • /
    • pp.351-363
    • /
    • 2020
  • It is well known that alluvial sediment located in coastal region has been easily affected by geohazard like ground subsidence, marine or meteorological disasters which threaten invaluable lives and properties. The subsidence is a sinking of the ground due to underground material movement that mostly related to soil compaction by water extraction. Thus, continuous monitoring is essential to protect possible damage from the ground subsidence in the coastal region. Radar interferometric application has been widely used to estimate surface displacement from phase information of synthetic aperture radar (SAR). Thanks to advanced SAR technique like the Small BAseline Subset (SBAS), a time-series of surface displacement could be successfully calculated with a large amount of SAR observations (>20). Because the ALOS-2 PALSAR-2 L-band observations maintain higher coherence compared with other shorter wavelength like X- or C-band, it has been regarded as one of the best resources for Earth science. However, the number of ALOS-2 PALSAR-2 observations might be not enough for the SBAS application due to its global monitoring observation scenario. Unfortunately, the number of the ALOS-2 PALSAR-2 Stripmap images in area of our interest, Busan which located in the Southeastern Korea, is only 11 which is insufficient to apply the SBAS time-series analysis. Although it is common that the radar interferometry utilizes multiple SAR images collected from same acquisition mode, it has been reported that the ALOS-2 PALSAR-2 Stripmap-ScanSAR interferometric application could be possible under specific acquisition mode. In case that we can apply the Stripmap-ScanSAR interferometry with the other 18 ScanSAR observations over Busan, an enhanced time-series surface displacement with better temporal resolution could be estimated. In this study, we evaluated feasibility of the ALOS-2 PALSAR-2 Stripmap-ScanSAR interferometric application using Gamma software considering differences of chirp bandwidth and pulse repetition frequency (PRF) between two acquisition modes. In addition, we analyzed the interferograms with respect to spectral shift of radar carrier frequency and common band filtering. Even though it shows similar level of coherence regardless of spectral shift in the radar carrier frequency, we found periodic spectral noises in azimuth direction and significant degradation of coherence in azimuth direction after common band filtering. Therefore, the characteristics of spectral bandwidth in the range and azimuth direction should be considered cautiously for the ALOS-2 PALSAR-2 Stripmap-ScanSAR interferometry.

Waveguide Spatial Interference Filtering in Adaptive Matched Field Processing (적응 정합장처리에서 도파관 공간간섭 필터링)

  • 김재수;김성일;신기철;김영규;박정수
    • The Journal of the Acoustical Society of Korea
    • /
    • v.23 no.4
    • /
    • pp.288-295
    • /
    • 2004
  • Detection and localization of a slow and quiet target in shallow water environments is a challenging problem for which it is well known that snapshot is deficient because of a fast and strong interferer. This paper presents waveguide interference filtering technique that mitigate strong interferer problems in adaptive matched field processing. MCM (multiple constraint method) based on NDC (null direction constraint) has been proposed for new spatial interferer filter. MCM-NDC using replica force a interferer component to be filtered through CSDM (cross-spectral density matrix). This filtering have an effect on sidelobe reduction and restoring of signal gain of a quiet target. This technique was applied to a simulation on Pekeris waveguide and vertical array data from MAPLE03 (matched acoustic properties and localization experiment) in the East Sea and was shown to improve SBNR (signal-to-background-and-noise ratio) over the standard MVDR (minimum-variance distortionless response) and NSP (null space projection) technique.

Isolated Digit and Command Recognition in Car Environment (자동차 환경에서의 단독 숫자음 및 명령어 인식)

  • 양태영;신원호;김지성;안동순;이충용;윤대희;차일환
    • The Journal of the Acoustical Society of Korea
    • /
    • v.18 no.2
    • /
    • pp.11-17
    • /
    • 1999
  • This paper proposes an observation probability smoothing technique for the robustness of a discrete hidden Markov(DHMM) model based speech recognizer. Also, an appropriate noise robust processing in car environment is suggested from experimental results. The noisy speech is often mislabeled during the vector quantization process. To reduce the effects of such mislabelings, the proposed technique increases the observation probability of similar codewords. For the noise robust processing in car environment, the liftering on the distance measure of feature vectors, the high pass filtering, and the spectral subtraction methods are examined. Recognition experiments on the 14-isolated words consists of the Korean digits and command words were performed. The database was recorded in a stopping car and a running car environments. The recognition rates of the baseline recognizer were 97.4% in a stopping situation and 59.1% in a running situation. Using the proposed observation probability smoothing technique, the liftering, the high pass filtering, and the spectral subtraction the recognition rates were enhanced to 98.3% in a stopping situation and to 88.6% in a running situation.

  • PDF

The comparison of spatial/spectral distortion on the hybrid pansharpened images by the spatial correlation methods (공간 상관도 기법에 따른 하이브리드 융합영상의 공간/분광 왜곡 평가)

  • Choi, Jae-Wan;Kim, Dae-Sung;Kim, Yong-Ii
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.29 no.2
    • /
    • pp.175-181
    • /
    • 2011
  • In remote sensing, it has been a difficult task to obtain a multispectral image with high spatial resolution because of the technical limitation of satellite sensors. In order to solve these problems, various pansharpening algorithms have been tried and proposed. However, most pansharpened images created by various approaches tend to distort the spectral characteristics of the original multispectral image or decrease the visual sharpness of the panchromatic image. To minimize the spectral distortion of pansharpened image while preserving spatial information of the panchromatic image, a hybrid pansharpening algorithm based on the spatial correlation was proposed. In this paper, we analyzed the spatial and spectral distortion of the hybrid pansharpened images generated by the various spatial correlation methods. In the experiments, we proved that the method by using Laplacian filtering was more efficient than other high frequency extraction algorithms in the viewpoint of spectral distortion and spatial sharpness.

On-Line Blind Channel Normalization for Noise-Robust Speech Recognition

  • Jung, Ho-Young
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.1 no.3
    • /
    • pp.143-151
    • /
    • 2012
  • A new data-driven method for the design of a blind modulation frequency filter that suppresses the slow-varying noise components is proposed. The proposed method is based on the temporal local decorrelation of the feature vector sequence, and is done on an utterance-by-utterance basis. Although the conventional modulation frequency filtering approaches the same form regardless of the task and environment conditions, the proposed method can provide an adaptive modulation frequency filter that outperforms conventional methods for each utterance. In addition, the method ultimately performs channel normalization in a feature domain with applications to log-spectral parameters. The performance was evaluated by speaker-independent isolated-word recognition experiments under additive noise environments. The proposed method achieved outstanding improvement for speech recognition in environments with significant noise and was also effective in a range of feature representations.

  • PDF

GPS Output Signal Processing considering both Correlated/White Measurement Noise for Optimal Navigation Filtering

  • Kim, Do-Myung;Suk, Jinyoung
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.13 no.4
    • /
    • pp.499-506
    • /
    • 2012
  • In this paper, a dynamic modeling for the velocity and position information of a single frequency stand-alone GPS(Global Positioning System) receiver is described. In static condition, the position error dynamic model is identified as a first/second order transfer function, and the velocity error model is identified as a band-limited Gaussian white noise via non-parametric method of a PSD(Power Spectrum Density) estimation in continuous time domain. A Kalman filter is proposed considering both correlated/white measurements noise based on identified GPS error model. The performance of the proposed Kalman filtering method is verified via numerical simulation.

Beamforming Optimization Using Filterbank-based Frost Algorithm (필터뱅크 기반 프로스트 알고리즘을 이용한 빔포밍 최적화)

  • Park, Ji-Hoon;Lee, Sung-Joo;Hong, Jeong-Pyo;Jeong, Sang-Bae;Hahn, Min-Soo
    • MALSORI
    • /
    • no.66
    • /
    • pp.73-86
    • /
    • 2008
  • Beamforming is one of the spatial filtering techniques which extract only desired signals from noisy environments using microphone arrays. Fixed beamforming is a simple concept and easy to implement. However, it does not show good performance in real noisy conditions. As an adaptive beamforming, Frost algorithm can be a good candidate. It uses the concept of the linearly constrained minimum variance (LCMV) algorithm. The difference between the Frost and the LCMV algorithm is the error correction scheme which is very effective feature in the aspect of performance. In this paper, as quadrature mirror filtering (QMF)-based filterbank is utilized as the pre-processing of the Frost beamformning, the filter length and the learning rate of each band is optimized to improve the performance. The performance is measured by the signal-to-noise ratio (SNR) and the Bark's scale spectral distortion (BSD).

  • PDF

UV/IR flame detector using Microprocessor (마이크로프로세서를 사용한 UV/IR 불곶 감지기)

  • 박성진;임병현;임종연;김명원;윤길호
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.215-218
    • /
    • 2001
  • A flame detector responds either to radiant energy visible to the human eye or outside the range of human vision. Such a detector is sensitive to glowing embers, coals, or flames which radiate energy of sufficient intensity and spectral quality to actuate the alarm. An infra-red detectors can respond to the total IR component of the flame alone or in combination with flame flicker in the frequency range of 5 to 30 Hz. A major problem in the use of infrared detectors receiving total IR radiation is the possible interference of solar radiation in the infrared region. When detectors are located in places shielded from the sun, such as vaults. filtering or shielding the unit from the sun's rays is unnecessary. In this study, we proposed method for redue a false alarm with using filtering & sensor technology for distinguish of causes of raise a false alarm and pure flame.

  • PDF

Plasmonic Color Filter with Robustness Against Cross Talk for Compact Imaging Applications

  • Cho, Hyo Jong;Do, Yun Seon
    • Current Optics and Photonics
    • /
    • v.4 no.1
    • /
    • pp.16-22
    • /
    • 2020
  • In high resolution imaging devices, smaller aperture in the color filter causes cross talk which provides incorrect information. Plasmonic color filters (PCFs) have been reported as an alternative of the conventional color resist based-color filter (CRCF) and many studies on PCFs demonstrated the filtering function by PCFs with a sub-micron size. In this work, we investigated the cross talk performance of PCFs compared to CRCFs. The effect of cross talk over distance from the filter were measured for each filter. Despite poorer spectral filtering characteristics, PCFs were more robust against cross talk than CRCFs. Also, the further away from the filter, the more cross talk appeared. As a result, PCFs showed less cross talk than CRCFs at about 82% of the results measured at a distance of 2~10 ㎛. This study will help to make practical use of PCFs in high-resolution imaging applications.

A Study on the Reproduction of Acoustic Characteristics of a Car's Exhaust Noise Using Digital Filtering Technique (디지탈 필터링 기법(技法)을 이용(利用)한 자동차(自動車) 배기소음(排氣騷音)의 음향특성(音響特性) 재현(再現)에 관(關)한 연구(硏究))

  • Cho, J.H.;Lee, J.M.;Hwang, Y.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.1 no.3
    • /
    • pp.55-62
    • /
    • 1993
  • Autoregressive moving average(ARMA) model which is a time domain parametric modeling method is implemented for modeling and reproducing characteristics of exhaust noise of an automobile in various RPM range. Experiments have been carried out using 9 set of exhaust noise signals measured at 1,000-3,000 RPM range. Characteristics of sampled signals were estimated using ARMA modeling and Akaike's FPE(final prediction error) criterion to define exact model structure and for model validation. The digital filter consisted of the esitmated ARMA(70,1) model parameters was programed to reproduce exhaust noise. The spectral analysis of reproduced noise is very close to original. The results show that our approaching technique for reproducing acoustic characteristics is valid and feasible to apply in the field of noise quality control.

  • PDF