• Title/Summary/Keyword: Spectral entropy

Search Result 60, Processing Time 0.029 seconds

Adaptive Wavelet Denoising For Speech Rocognition in Car Interior Noise

  • Kim, E. Jae;Yang, Sung-Il;Kwon, Y.;Jarng, Soon S.
    • The Journal of the Acoustical Society of Korea
    • /
    • v.21 no.4E
    • /
    • pp.178-182
    • /
    • 2002
  • In this paper, we propose an adaptive wavelet method for car interior noise cancellation. For this purpose, we use a node dependent threshold which minimizes the Bayesian risk. We propose a noise estimation method based on spectral entropy using histogram of intensity and a candidate best basis instead of Donoho's best bases. And we modify the hard threshold function. Experimental results show that the proposed algorithm is more efficient, especially to heavy noisy signal than conventional one.

Urban Environment change detection through landscape indices derived from Landsat TM data

  • Iisaka, Joji
    • Proceedings of the KSRS Conference
    • /
    • 2002.10a
    • /
    • pp.696-701
    • /
    • 2002
  • This paper describes some results of change detection in Tokyo metropolitan area, Japan , using the Landsat TM data, and methods to quantify the ground cover classes. The changes are analyzed using the measures of not only conventional spectral classes but also a set of landscape indices to describe spatial properties of ground cove types using fractal dimension of objects, entropy in the specific windows defining the neighbors of focusing locations. In order eliminate the seasonal radiometric effects on TM data, an automated class labeling method is also attempted. Urban areas are also delineated automatically by defining the boundaries of the urban area. These procedures for urban change detection were implemented by the unified image computing methods proposed by the author, they can be automated in coherent and systematic ways, and it is anticipated to automate the whole procedures. The results of this analysis suggest that Tokyo metropolitan area was extended to the suburban areas along the new transportation networks and the high density area of Tokyo were also very much extended during the period between 1985 and 1995.

  • PDF

Backbone Dynamics and Model-Free Analysis of N-terminal Domain of Human Replication Protein A 70

  • Yoo, Sooji;Park, Chin-Ju
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.22 no.1
    • /
    • pp.18-25
    • /
    • 2018
  • Replication protein A (RPA) is an essential single-stranded DNA binding protein in DNA processing. It is known that N terminal domain of RPA70 (RPA70N) recruits various protein partners including damage-response proteins such as p53, ATRIP, Rad9, and MRE11. Although the common binding residues of RPA70N were revealed, dynamic properties of the protein are not studied yet. In this study, we measured $^{15}N$ relaxation parameters ($T_1,\;T_2$ and heteronuclear NOE) of human RPA70N and analyzed them using model-free analysis. Our data showed that the two loops near the binding site experience fast time scale motion while the binding site does not. It suggests that the protein binding surface of RPA70N is mostly rigid for minimizing entropy cost of binding and the loops can experience conformational changes.

AUTOMATIC IMAGE SEGMENTATION OF HIGH RESOLUTION REMOTE SENSING DATA BY COMBINING REGION AND EDGE INFORMATION

  • Byun, Young-Gi;Kim, Yong-II
    • Proceedings of the KSRS Conference
    • /
    • 2008.10a
    • /
    • pp.72-75
    • /
    • 2008
  • Image segmentation techniques becoming increasingly important in the field of remote sensing image analysis in areas such as object oriented image classification. This paper presents a new method for image segmentation in High Resolution Remote Sensing Image based on Seeded Region Growing (SRG) and Edge Information. Firstly, multi-spectral edge detection was done using an entropy operator in pan-sharpened QuickBird imagery. Then, the initial seeds were automatically selected from the obtained edge map. After automatic selection of significant seeds, an initial segmentation was achieved by applying SRG. Finally the region merging process, using region adjacency graph (RAG), was carried out to get the final segmentation result. Experimental results demonstrated that the proposed method has good potential for application in the segmentation of high resolution satellite images.

  • PDF

Speech Active Interval Detection Method in Noisy Speech (잡음음성에서의 음성 활성화 구간 검출 방법)

  • Lee, Kwang-Seok;Choo, Yeon-Gyu;Kim, Hyun-Deok
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2008.10a
    • /
    • pp.779-782
    • /
    • 2008
  • It is important to detect speech active interval from Noisy Speech in speech communication and speech recognition. In this research, we propose characteristic parameter with combining spectral Entropy for detect speech active interval in Noisy Speech, and compare performance of speech active interval based on energy. The results shows that analysis using proposed characteristic parameter is higher performance the others in noisy environment.

  • PDF

Voice Activity Detection Algorithm Using Speech Periodicity and QSNR in Noisy Environment (음성의 주기성과 QSNR을 이용한 잡음환경에서의 음성검출 알고리즘)

  • Jeong, Ju-Hyun;Song, Hwa-Jeon;Kim, Hyung-Soon
    • Proceedings of the KSPS conference
    • /
    • 2005.11a
    • /
    • pp.59-62
    • /
    • 2005
  • Voice activity detection (VAD) is important in many areas of speech processing technology. Speech/nonspeech discrimination in noisy environments is a difficult task because the feature parameters used for the VAD are sensitive to the surrounding environments. Thus the VAD performance is severely degraded at low signal-to-noise ratios (SNRs). In this paper, a new VAD algorithm is proposed based on the degree of voicing and Quantile SNR (QSNR). These two feature parameters are more robust than other features such as energy and spectral entropy in noisy environments. The effectiveness of proposed algorithm is evaluated under the diverse noisy environments in the Aurora2 DB. According to out experiment, the proposed VAD outperforms the ETSI Advanced Frontend VAD.

  • PDF

Feature Extraction in an Aerial Photography of Gimnyeong Sand Dune Area by Texture Filtering

  • Chang E.M.;Park K.;Jung I.K.
    • Proceedings of the KSRS Conference
    • /
    • 2004.10a
    • /
    • pp.613-616
    • /
    • 2004
  • To find the best way to distinguish sand dunes from urban building and rural patches, textural analysis has been performed in Kimnyeong sand dune, Jeju. An aerial photo was re-sampled into one-meter. Homomorphic filters were applied to the original sub-scene and then high-pass filtered one. The entropy filtered one proves to be the best extraction method after high pass filtered-homomorphic filters in urban areas. The spectral values of sand dune area were similar to open land in rural area. In contrast, the texture values of sand dune area are more homogeneous than those of open land in rural area.

  • PDF

Lossless Compression for Hyperspectral Images based on Adaptive Band Selection and Adaptive Predictor Selection

  • Zhu, Fuquan;Wang, Huajun;Yang, Liping;Li, Changguo;Wang, Sen
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.8
    • /
    • pp.3295-3311
    • /
    • 2020
  • With the wide application of hyperspectral images, it becomes more and more important to compress hyperspectral images. Conventional recursive least squares (CRLS) algorithm has great potentiality in lossless compression for hyperspectral images. The prediction accuracy of CRLS is closely related to the correlations between the reference bands and the current band, and the similarity between pixels in prediction context. According to this characteristic, we present an improved CRLS with adaptive band selection and adaptive predictor selection (CRLS-ABS-APS). Firstly, a spectral vector correlation coefficient-based k-means clustering algorithm is employed to generate clustering map. Afterwards, an adaptive band selection strategy based on inter-spectral correlation coefficient is adopted to select the reference bands for each band. Then, an adaptive predictor selection strategy based on clustering map is adopted to select the optimal CRLS predictor for each pixel. In addition, a double snake scan mode is used to further improve the similarity of prediction context, and a recursive average estimation method is used to accelerate the local average calculation. Finally, the prediction residuals are entropy encoded by arithmetic encoder. Experiments on the Airborne Visible Infrared Imaging Spectrometer (AVIRIS) 2006 data set show that the CRLS-ABS-APS achieves average bit rates of 3.28 bpp, 5.55 bpp and 2.39 bpp on the three subsets, respectively. The results indicate that the CRLS-ABS-APS effectively improves the compression effect with lower computation complexity, and outperforms to the current state-of-the-art methods.

An Evaluation of the Use of the Texture in Land Cover Classification Accuracy from SPOT HRV Image of Pusan Metropolitan Area (SPOT HRV 영상을 이용한 부산 지역 토지피복분류에 있어서의 질감의 기여에 관한 평가)

  • Jung, In-Chul
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.2 no.1
    • /
    • pp.32-44
    • /
    • 1999
  • Texture features can be incorporated in classification procedure to resolve class confusions. However, there have been few application-oriented studies made to evaluate the relative powers of texture analysis methods in a particular environment. This study evaluates the increases in the land-cover classification accuracy of the SPOT HRV multispectral data of Pusan Metropolitan area from texture processing. Twenty-four texture measures were derived from the SPOT HRV band 3 image. Each of these features were used in combination with the three spectral images in the classification of 10 land-cover classes. Supervised training and a Gaussian maximum likelihood classifier were used in the classification. It was found that while entropy produces the best empirical results in terms of the overall classification, other texture features can also largely improve the classification accuracies obtained by the use of the spectral images only. With the inclusion of texture, the classification for each category improves. Specially, urban built-up areas had much increase in accuracy. The results indicate that texture size 5 by 5 and 7 by 7 may be suitable at land cover classification of Pusan Metropolitan area.

  • PDF

Effects of Head-Up Tilt on Nonlinear Properties of Heart Rate Variability in Young and Elderly Subjects

  • Jin, Seung-Hyun;Kim, Wuon-Shik;No, Ki-Yong
    • International Journal of Vascular Biomedical Engineering
    • /
    • v.3 no.1
    • /
    • pp.14-22
    • /
    • 2005
  • In the present study, our aim is to investigate whether responses to the head-up tilt (HUT) on nonlinear properties of heart rate variability (HRV) in young and elderly subjects are different or not. Thirteen young-healthy subjects ($24.5{\pm}3.7$ years) and 18 old-aged healthy subjects ($74.5{\pm}7.4$ years) participated in this study. An electrocardiogram (ECG) in the supine posture, at $0^{\circ}$, and in the standing posture, at $70^{\circ}$ of head-up tilt, was recorded. Detrended fluctuation analysis (DFA) and approximate entropy (ApEn), measures of short-/long-term correlation properties and overall complexity of heart rate (HR) respectively, along with spectral components of HR variability (HRV) were analyzed for both the supine and HUT postures. We observed that the short-term fractal exponent ${\alpha}_1$ increased during HUT posture (F(1, 29) = 39.79, P = 0.000), especially, the young subjects showed a significantly higher values compared to the elderly subjects. ApEn significantly decreased (F(1, 29) = 8.61, P = 0.006) during HUT posture. HUT posture decreased the complexity in HR dynamics and increased short-term fractal exponent values in young subjects but not in elderly subjects. These results imply that there are differences of response to HUT on nonlinear properties between young and elderly subjects.

  • PDF