• Title/Summary/Keyword: Spectral element model

검색결과 101건 처리시간 0.03초

일차원 혈류해석을 위한 스펙트럴 요소 모델링 (Spectral Element modeling for the one-dimensional blood flow analysis)

  • 장인준;이우식
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2008년도 정기 학술대회
    • /
    • pp.152-155
    • /
    • 2008
  • The blood flow characteristics have been closely related to various cardiovascular diseases, it is very important to predict them accurate enough in an efficient way. Thus, this paper proposes a one-dimensional spectral element model for the blood flow through blood vessels. The spectral element model is formulated by using the variational method. The nonlinear terms in spectral element model are all treated as the pseudo-force and an iterative solution method is applied in the frequency domain.

  • PDF

축 방향으로 이동하는 열 탄성 보의 스펙트럴요소해석 (Spectral Element Analysis of an Axially Moving Thermoelastic Beam)

  • 김도연;권경수;이우식
    • 한국철도학회논문집
    • /
    • 제7권3호
    • /
    • pp.239-244
    • /
    • 2004
  • The use of frequency-dependent spectral element matrix (or exact dynamic stiffness matrix) in structural dynamics may provide very accurate solutions, together with drastically reducing the number of degrees of freedom to improve the computation efficiency and cost problems. Thus, this paper develops a spectral element model for the coupled thermoelastic beam which axially moves with constant speed under a uniform tension. The accuracy of the spectral element model is then evaluated by comparing the natural frequencies obtained by the present element model with those obtained by the conventional finite element model.

내부 비정상 유동을 갖는 파이프계의 스펙트럼요소해석 (Spectral Element Analysis of the Pipeline Conveying Internal Unsteady Fluid)

  • 박종환;이우식
    • 대한기계학회논문집A
    • /
    • 제29권12권
    • /
    • pp.1574-1585
    • /
    • 2005
  • In this paper, a spectral element model is developed for the uniform straight pipelines conveying internal unsteady fluid. Four coupled pipe-dynamics equations are derived first by using the Hamilton's principle and the principles of fluid mechanics. The transverse displacement, the axial displacement, the fluid pressure and the fluid velocity are all considered as the dependent variables. The coupled pipe-dynamics equations are then linearized about the steady state values of the fluid pressure and velocity. As the final step, the spectral element model represented by the exact dynamic stiffness matrix, which is often called spectral element matrix, is formulated by using the frequency-domain solutions of the linearized pipe-dynamics equations. The FFT-based spectral dynamic analyses are conducted to evaluate the accuracy of the present spectral element model and also to investigate the structural dynamic characteristics and the internal fluid transients of an example pipeline system.

An approximate spectral element model for the dynamic analysis of an FGM bar in axial vibration

  • Lee, Minsik;Park, Ilwook;Lee, Usik
    • Structural Engineering and Mechanics
    • /
    • 제61권4호
    • /
    • pp.551-561
    • /
    • 2017
  • As FGM (functionally graded material) bars which vibrate in axial or longitudinal direction have great potential for applications in diverse engineering fields, developing a reliable mathematical model that provides very reliable vibration and wave characteristics of a FGM axial bar, especially at high frequencies, has been an important research issue during last decades. Thus, as an extension of the previous works (Hong et al. 2014, Hong and Lee 2015) on three-layered FGM axial bars (hereafter called FGM bars), an enhanced spectral element model is proposed for a FGM bar model in which axial and radial displacements in the radial direction are treated more realistic by representing the inner FGM layer by multiple sub-layers. The accuracy and performance of the proposed enhanced spectral element model is evaluated by comparison with the solutions obtained by using the commercial finite element package ANSYS. The proposed enhanced spectral element model is also evaluated by comparison with the author's previous spectral element model. In addition, the effects of Poisson's ratio on the dynamics and wave characteristics in example FGM bars are numerically investigated.

Spectral Element Analysis for an Axially Moving Viscoelastic Beam

  • Hyungmi Oh;Jooyong Cho;Lee, Usik
    • Journal of Mechanical Science and Technology
    • /
    • 제18권7호
    • /
    • pp.1159-1168
    • /
    • 2004
  • In this paper, a spectral element model is derived for the axially moving viscoelastic beams subject to axial tension. The viscoelastic material is represented in a general form by using the one-dimensional constitutive equation of hereditary integral type. The high accuracy of the present spectral element model is verified first by comparing the eigenvalues obtained by the present spectral element model with those obtained by using the conventional finite element model as well as with the exact analytical solutions. The effects of viscoelasticity and moving speed on the dynamics of moving beams are then numerically investigated.

이동하는 열탄성 보-평판의 진동에 대한 스펙트럴요소 해석 (An Axially Moving Thermoelastic Beam-plate: Spectral Element Modeling and Analysis)

  • 권경수;조주용;이우식
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2005년도 춘계학술대회 논문집
    • /
    • pp.344-349
    • /
    • 2005
  • The axially moving thin beam-plates exposed to sudden thermal loadings may experience severe vibrations through the thermal shock process. For accurate prediction of the thermal shock-induced vibrations, this paper develops a spectral element model for axially moving thermoelastic beam-plates. The spectral element model which is represented by spectral element matrix is formulated from the frequency-dependent dynamic shape functions which satisfy the governing equations in the frequency-domain. Thus, when compared with the classical finite element model in which simple polynomial functions are used as the shape functions, the spectral element model can provide exact solution by treating a whole uniform structure member as a single finite element, regardless of its length.

  • PDF

동맥 유동해석을 위한 스펙트럴 요소의 개발 (Spectral Element Modeling for the Blood Flow through Artery)

  • 장인준;서보성;이우식
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2007년도 춘계학술대회논문집
    • /
    • pp.383-386
    • /
    • 2007
  • As the blood flow characteristics have been recognized to be closely related to various cardiovascular diseases, it is very important to predict them accurate enough in an efficient way. Thus, this paper proposes a one-dimensional spectral finite element model for the human blood vessels. The spectral finite element model is formulated in the frequency-domain by using the exact frequency dependent shape functions and applied to an ascending aorta.

  • PDF

Dynamics of an Axially Moving Bernoulli-Euler Beam: Spectral Element Modeling and Analysis

  • Hyungmi Oh;Lee, Usik;Park, Dong-Hyun
    • Journal of Mechanical Science and Technology
    • /
    • 제18권3호
    • /
    • pp.395-406
    • /
    • 2004
  • The spectral element model is known to provide very accurate structural dynamic characteristics, while reducing the number of degree-of-freedom to resolve the computational and cost problems. Thus, the spectral element model for an axially moving Bernoulli-Euler beam subjected to axial tension is developed in the present paper. The high accuracy of the spectral element model is then verified by comparing its solutions with the conventional finite element solutions and exact analytical solutions. The effects of the moving speed and axial tension on the vibration characteristics, wave characteristics, and the static and dynamic stabilities of a moving beam are investigated.

구조감쇠가 고려된 스펙트럴요소 모델을 이용한 구조손상규명 (Structural Damage Identification by Using the Structurally Damped Spectral Element Model)

  • 김정수;조주용;이우식
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2004년도 추계학술대회 논문집
    • /
    • pp.121-126
    • /
    • 2004
  • In this paper, a nonlinear structural damage identification algorithm is derived by taking into account the structurally damped spectral element model thinking over a real situation. The structural damage identification analyses are conducted by using the Newton-Raphson method. It is found that, in general Structural Damage Identification by using the Structurally Damped Spectral Element Model provides the same exact damage identification results when compared with the results obtained by the structurally undamped spectral model.

  • PDF

스펙트럴요소법을 이용한 내부 비정상류를 갖는 파이프에 대한 진동해석 (Vibration Analysis of the Pipeline with Internal Unsteady Fluid Flow by Using Spectral Element Method)

  • 서보성;조주용;이우식
    • 한국소음진동공학회논문집
    • /
    • 제16권4호
    • /
    • pp.387-393
    • /
    • 2006
  • 이 논문에서는 내부에 비정상 유동이 흐르는 균일한 직선 파이프에 대한 스펙트럴요소모델을 개발하였다. 개발된 스펙트럴요소모델에 대한 스펙트럴요소행렬은 주파수 영역에서 구한 파이프 역학 방정식의 엄밀해를 이용하여 유도되었다. 이 스펙트럴요소모델의 정확성을 평가하고 한 예제 파이프 계의 진동특성과 파이프 내부 유동특성을 고찰하기 위하여 스펙트럴 동역학 해석을 수행하였다.