• Title/Summary/Keyword: Spectral Estimation

Search Result 534, Processing Time 0.025 seconds

Estimation on the Power Spectral Densities of Daily Instantaneous Maximum Fluctuation Wind Velocity (변동풍속의 파워 스펙트럴 밀도에 관한 평가)

  • Oh, Jong Seop
    • Journal of Korean Society of Disaster and Security
    • /
    • v.10 no.2
    • /
    • pp.21-28
    • /
    • 2017
  • Wind turbulence data is required for engineering calculations of gust speeds, mean and fluctuating loading. Spectral densities are required as input data for methods used in assessing dynamic response. This study is concerned with the estimation of daily instantaneous maximum wind velocity in the meteorological major cities (selected each 6 points) during the yearly 1987-2016.12.1. The purpose of this paper is to present the power spectral densities of the daily instantaneous maximum wind velocity. In the processes of analysis, used observations data obtained at Korea Meteorological Adminstration(KMA), it is assumed as a random processes. From the analysis results, in the paper estimated power spectral densities function(Blunt model) shows a very closed with von Karman and Solari's spectrum models.

Compressive sensing-based two-dimensional scattering-center extraction for incomplete RCS data

  • Bae, Ji-Hoon;Kim, Kyung-Tae
    • ETRI Journal
    • /
    • v.42 no.6
    • /
    • pp.815-826
    • /
    • 2020
  • We propose a two-dimensional (2D) scattering-center-extraction (SCE) method using sparse recovery based on the compressive-sensing theory, even with data missing from the received radar cross-section (RCS) dataset. First, using the proposed method, we generate a 2D grid via adaptive discretization that has a considerably smaller size than a fully sampled fine grid. Subsequently, the coarse estimation of 2D scattering centers is performed using both the method of iteratively reweighted least square and a general peak-finding algorithm. Finally, the fine estimation of 2D scattering centers is performed using the orthogonal matching pursuit (OMP) procedure from an adaptively sampled Fourier dictionary. The measured RCS data, as well as simulation data using the point-scatterer model, are used to evaluate the 2D SCE accuracy of the proposed method. The results indicate that the proposed method can achieve higher SCE accuracy for an incomplete RCS dataset with missing data than that achieved by the conventional OMP, basis pursuit, smoothed L0, and existing discrete spectral estimation techniques.

Average spectral acceleration: Ground motion duration evaluation

  • Osei, Jack Banahene;Adom-Asamoah, Mark
    • Earthquakes and Structures
    • /
    • v.14 no.6
    • /
    • pp.577-587
    • /
    • 2018
  • The quantitative assessment of the seismic collapse risk of a structure requires the usage of an optimal intensity measure (IM) which can adequately characterise the severity of the ground motion. Research suggests that the average spectral acceleration ($Sa_{avg}$) may be an efficient and sufficient alternate IM as compared to the more traditional first mode spectral acceleration, $Sa(T_1)$, particularly during seismic collapse risk estimation. This study primarily presents a comparative evaluation of the sufficiency of the average spectral acceleration with respect to ground motion duration, and secondarily assesses the impact of ground motion duration on collapse risk estimation. By assembling a suite of 100 historical ground motions, incremental dynamic analysis of 60 different inelastic single-degree-of-freedom (SDF) oscillators with varying periods and ductility capacities were analysed, and collapse risk estimates obtained. Linear regression models are used to comparatively quantify the sufficiency of $Sa_{avg}$ and $Sa(T_1)$ using four significant duration metrics. Results suggests that an improved sufficiency may exist for $Sa_{avg}$ when the period of the SDF system increases, particularly beyond 0.5, as compare to $Sa(T_1)$. In reference to the ground motion duration measures, results indicated that the sufficiency of $Sa_{avg}$ is more sensitive to significant duration definitions that consider almost the full wave train of an accelerogram ($SD_{a5-95}$ and $SD_{v5-95}$). In order to obtain a reduced variability of the collapse risk estimate, the 5-95% significant duration metric defined using the Arias integral ($SD_{a5-95}$) should be used for seismic collapse risk estimation in conjunction with $Sa_{avg}$.

Experimental Study of Backscattered Underwater Signals from Multiple Scatterers (다중 산란체에 의한 수중 산란신호 실험연구)

  • Kim, Eunhye;Yoon, Kwan-seob;Jungyul Na
    • The Journal of the Acoustical Society of Korea
    • /
    • v.23 no.1E
    • /
    • pp.31-39
    • /
    • 2004
  • Backscattered underwater signals from multiple scatterers contain information regarding resolvable spatial distribution of scatterers. This experimental study describes the spectral characteristics of backscattered signal from multiple scatterers, which are regularly or randomly spaced, in terms of their amplitude and phase and a proper signal analysis that will eventually provide scatterer spacing estimation. Air-filled tubes suspended in water, steel balls and plastic tubes buried in the sediment are the multiple scatterers. The cepstrum and the spectral autocorrelation (SAC) methods were used to estimate the scatterer spacing from the backscattered signals. It was found that the SAC method could be improved by employing singular value decomposition (SVD) to extract the effective rank for the spectral components. Unlike the conventional method of estimating the density of scatterers within the insonified volume of water, this type of estimation method would provide better understanding of the spatial distribution of scatterers in the ocean.

A Study on Spectral Characteristics of Ultrasonic Signal for Tissue Attennation Coefficient Measurement (생체내의 초음파 감쇄계수를 측정하기 위한 초음파 신호스펙트럼 특성에 관한 연구)

  • Huh, Woong
    • Journal of Biomedical Engineering Research
    • /
    • v.4 no.1
    • /
    • pp.29-36
    • /
    • 1983
  • In this paper, center frequency down slift of ultrasonic echo signals which for the measurements of frequency dependent attenuation in the biological tissue are estimated. Center frequency down shift of echo-signals are estimated after signal spectrum analysis of whole echo-signals. In case of signal spectrums are simple, estimation of down shift frequency is very simple and in case of complicate spectrum, estimation of down shift frequency is depend on spectral shape. In case of unable to estimate, frequency dependence of medium is nonlinear(n) 1), in which upper shift of spectrums are presented. In case of unable to estimate, spectrum analysis are performed at local position. At consquence, we know that spectral dispersions are caused complicately by biological tissue layer.

  • PDF

A Study on Power Spectral Estimation of Background EEG with Pisarenko Harmonic Decomposition (Pisarenko Harmonic Decomposition에 의한 배경 뇌파 파워 스팩트럼 추정에 관한 연구)

  • Jeong, Myeong-Jin;Hwang, Su-Yong;Choe, Gap-Seok
    • Journal of Biomedical Engineering Research
    • /
    • v.8 no.1
    • /
    • pp.69-74
    • /
    • 1987
  • The power spectrum of background EEG is estimated by the Plsarenko Harmonic Decomposition with the stochastic process whlch consists of the nonhamonic sinus Bid and the white nosie. The estimation results are examined and compared with the results from the maximum entropy spectral extimation, and the optimal order of this from the maximum entropy spectral extimation, and the optimal order of this model can be determined from the eigen value's fluctuation of autocorrelation of background EEG. From the comparing results, this method is possible to estimate the power spectrum of background EEG.

  • PDF

Smoothing Parameter Selection in Nonparametric Spectral Density Estimation

  • Kang, Kee-Hoon;Park, Byeong-U;Cho, Sin-Sup;Kim, Woo-Chul
    • Communications for Statistical Applications and Methods
    • /
    • v.2 no.2
    • /
    • pp.231-242
    • /
    • 1995
  • In this paper we consider kernel type estimator of the spectral density at a point in the analysis of stationary time series data. The kernel entails choice of smoothing parameter called bandwidth. A data-based bandwidth choice is proposed, and it is obtained by solving an equation similar to Sheather(1986) which relates to the probability density estimation. A Monte Carlo study is done. It reveals that the spectral density estimates using the data-based bandwidths show comparatively good performance.

  • PDF

Generating of the same hue population using hue angle and chroma vector (색상각와 채도벡터를 이용한 동일색상의 분광반사 모집단 생성)

  • 유미옥;서봉우;안석출
    • Journal of the Korean Graphic Arts Communication Society
    • /
    • v.18 no.2
    • /
    • pp.1-12
    • /
    • 2000
  • This paper proposes a new algorithm classifing same hues in order toe estimate the spectral reflectance of object from 3 band color image information. To estimate the spectral reflectance of object, the conventional estimation methods are required of 5 or 9 band digital color values. The 5 or 9 band image acquisition systems are required of 5 or 3 times same work for color image acquisition process. To solve the above problems, we propose a new method that can be estimated spectra reflectance estimation of object. The proposed method is to classify same hues corresponding a color stimulus, by using hue angle and chroma vector of a color stimulus. The classified same hues are used as the population corresponding a color stimulus. The range of same hue is estimated by the cumulative proportional ration according to the number of basis function.

  • PDF

Estimation of the Potato Growth Information Using Multi-Spectral Image Sensor (멀티 스펙트럴 이미지 센서를 이용한 감자의 생육정보 예측)

  • Kang, Tae-Hwann;Noguchi, Noboru
    • Journal of Biosystems Engineering
    • /
    • v.36 no.3
    • /
    • pp.180-186
    • /
    • 2011
  • The objective of this research was to establish the estimation method of growth information on potato using Multi-Spectral Image Sensor (MSIS) and Global Positioning System (GPS). And growth estimation map for determining a prescription map over the entire field was generated. To determine the growth model, 10 ground-truth points of areas of $4m^2$ each were selected and investigated. The growth information included stem number, crop height and SPAD value. In addition, images information involving the ground-truth points were also taken by an unmanned helicopter, and reflectance value of Green, Red, and NIR bands were calculated with image processing. Then, growth status of potato was modeled by multi-regression analysis using these reflectance value of Green, Red, and NIR. As a result, potato growth information could be detected by analyzing Green, Red, and NIR images. Stem number, crop height and SPAD value could be estimated with $R^2$ values of 0.600, 0.657 and 0.747 respectively. The generated GIS map would describe variability of the potato growth in a whole field.

Estimation of the Spectral Power Distribution of Illumination for Color Digital Image by Using Achromatic Region and Population (디지털 영상에서 무채색 영역과 모집단을 이용한 조명광원의 분광방사 추정)

  • 곽한봉;서봉우;이철회;하영호;안석출
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.2 no.2
    • /
    • pp.39-46
    • /
    • 2001
  • In this paper we propose a new method that can be estimation the spectral power distribution of the light source from three-band images. the light source is estimated by dividing the reflected spectral power distribution of the maximum achromatic region(L(λ)) by the corresponding surface reflectance(Ο(λ)). In order to obtain reflected spectral power distribution of the maximum achromatic region from three-bend images, a modified gray world assumption algorithm is adapted. And the maximum surface reflectance is estimated using the principal component analysis method along with achromatic population. The achromatic population is created from a set of given Munsell color chips whose chroma vector is less than threshold. Cumulative contribution ratio of principal components from the first to the third for classified achromatic population was about 99.75%. The reconstruction of illumination spectral power distribution by using achromatic population and three-band digital images captured under various light source was examined, and evaluated by RMSE between the original and reconstructed illumination spectral power distribution. This work was supported by grant No (2000-1-30200-005-3) from the Basic Research Program of the Korea Science & Engineering Foundation.

  • PDF