• Title/Summary/Keyword: Spectral Data

Search Result 2,633, Processing Time 0.033 seconds

Study on the First On-Orbit Solar Calibration Measurement of Ocean Scanning Multi-spectral Imager (OSMI)

  • Cho, Young-Min
    • Journal of the Optical Society of Korea
    • /
    • v.5 no.1
    • /
    • pp.9-15
    • /
    • 2001
  • The ocean Scanning Multi-spectral Imager (OSMI) is a payload on the KOrea Multi-Purpose SATellite (KOMPSAT) to perform worldwide ocean color monitoring f the study of biological oceanography. OSMI performs solar and dark calibrations for on-orbit instrument calibration. The purpose of the solar calibration is to monitor the degradation of imaging performance for each pixel of 6 spectral bands and to correct the degradation effect on OSMI image during the ground station date processing. The design, the operation concept, and the radiometric characteristics of the solar calibration are investigated. A linear model of image response and a solar calibration radiance model are proposed to study the instrument characteristics using the solar calibration data. The performance of spectral responsivity and spatial response uniformity. The first solar calibration data and the analysis results are important references for further study on the on-orbit stability of OSMI response during its lifetime.

Generation of Road Surface Profiles with a Power Spectral Density Function (전력밀도함수를 이용한 노면형상 생성에 관한 연구)

  • 김광석;유완석
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.5 no.1
    • /
    • pp.136-145
    • /
    • 1997
  • To analyzed ride quality and to predict durability in vehicle dynamics, it is essential to describe a road surface profile precisely. This paper presents a technique to generate road surface profiles in a spatial domain by using a power spectral density function. A single track power spectral density function is proposed to describe a road surface profile, which is also applicable for multi-track vehicle response analysis, The derived road surfaces are compared to ISO(International Organization for Standardization) standards and classifications, proposed by the MIRA(Motor Industry Research Association). The methodology in this paper is also proposed to generate road roughness description with a limited external data. A small amount of external curve data is combined with an internal PSD function to generate road surface roughness in a spatial domain.

  • PDF

Dispersion curve and Spectral Density in Sonic Log (음파검층에서의 분산 곡선 및 Spectral Density)

  • Kim, Jong-Man;Zhao, Weijun;Park, Sung-Kun;Hwang, Byung-Chul;Lee, Sung-Jin;Kim, Yeong-Hwa
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.323-328
    • /
    • 2007
  • We derived the dispersion curves and spectral density for several models constructed from physical property data of representative geology in Korea. Comparison between monopole and dipole sources, between physical properties, and between dispersion curves and spectral density maps have been made. The result was very helpful in sonic data acquisition as well as velocity determination.

  • PDF

VIMAP: AN INTERACTIVE PROGRAM PROVIDING RADIO SPECTRAL INDEX MAPS OF ACTIVE GALACTIC NUCLEI

  • Kim, Jae-Young;Trippe, Sascha
    • Journal of The Korean Astronomical Society
    • /
    • v.47 no.5
    • /
    • pp.195-199
    • /
    • 2014
  • We present a GUI-based interactive Python program, VIMAP, which generates radio spectral index maps of active galactic nuclei (AGN) from Very Long Baseline Interferometry (VLBI) maps obtained at different frequencies. VIMAP is a handy tool for the spectral analysis of synchrotron emission from AGN jets, specifically of spectral index distributions, turn-over frequencies, and core-shifts. In general, the required accurate image alignment is difficult to achieve because of a loss of absolute spatial coordinate information during VLBI data reduction (self-calibration) and/or intrinsic variations of source structure as function of frequency. These issues are overcome by VIMAP which in turn is based on the two-dimensional cross-correlation algorithm of Croke & Gabuzda (2008). In this paper, we briefly review the problem of aligning VLBI AGN maps, describe the workflow of VIMAP, and present an analysis of archival VLBI maps of the active nucleus 3C 120.

Maximum Entropy Power Spectral Estimation of Two-Dimensional Signal (2차원 신호의 최대 정보량을 갖는 전력 스펙트럼 추정)

  • Sho, Sang-Ho;Kim, Chong-Kyo;Lee, Moon-Ho
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.34 no.3
    • /
    • pp.107-114
    • /
    • 1985
  • This paper presents the iterative algorithm for obtaining the ME PSE(Maximum Entropy Power Spectral Estimation) of 2-dimensional signals. This problem involves a correction matching power spectral estimate that can be represented as the reciprocal of the spectral of 2-dimensional signals. This requires two matrix inversion every iterations. Thus, we compensate the matrix to be constantly positive definite with relaxational parameters. Using Row/Column decomposition Discrete Fourier Transform, we can decrease a calculation quantity. Using Lincoln data and white noise, this paper examines ME PSE algorithms. Finally, the results output at the graphic display device. The 2-dimensional data have the 3-dimensional axis components, and, this paper develops 3-dimensional graphic output algorithms using 2-dimensional DGL(Device Independent Graphic Library) which is prepared for HP-1000 F-series computer.

  • PDF

Semidefinite Spectral Clustering (준정부호 스펙트럼의 군집화)

  • Kim, Jae-Hwan;Choi, Seung-Jin
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2005.07a
    • /
    • pp.892-894
    • /
    • 2005
  • Graph partitioning provides an important tool for data clustering, but is an NP-hard combinatorial optimization problem. Spectral clustering where the clustering is performed by the eigen-decomposition of an affinity matrix [1,2]. This is a popular way of solving the graph partitioning problem. On the other hand, semidefinite relaxation, is an alternative way of relaxing combinatorial optimization. issuing to a convex optimization[4]. In this paper we present a semidefinite programming (SDP) approach to graph equi-partitioning for clustering and then we use eigen-decomposition to obtain an optimal partition set. Therefore, the method is referred to as semidefinite spectral clustering (SSC). Numerical experiments with several artificial and real data sets, demonstrate the useful behavior of our SSC. compared to existing spectral clustering methods.

  • PDF

The Endmember Analysis for Sub-Pixel Detection Using the Hyperspectral Image

  • Kim, Dae-Sung;Cho, Young-Wook;Han, Dong-Yeob;Kim, Young-Il
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.732-734
    • /
    • 2003
  • In the middle -resolution remote sensing, the Ground Sampled Distance(GSD) sensed and sampled by the detector is generally larger than the size of objects(or materials) of interest, in which case several objects are embedded in a single pixel and cannot be detected spatially. This study is intended to solve this problem of a hyperspectral data with high spectral resolution. We examined the detection algorithm, Linear Spectral Mixing Model, and also made a test on the Hyperion data. To find class Endmembers, we applied two methods, Spectral Library and Geometric Model, and compared them with each other.

  • PDF

A Comparative Study of Reconstruction Methods for LDV Spectral Analysis (LDV 스펙트럼 분석을 위한 재생방법의 비교 연구)

  • 이도환;성형진
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.1
    • /
    • pp.166-174
    • /
    • 1994
  • A critical evaluation is made of the spectral bias which occurs in the use of a laser doppler velocimeter(LDV). Two processing algorithms are considered for spectral estimates: the sample and hold interpolation method(SH) and the nonuniform Shannon reconstruction technique(SR). Assessment is made of these for varying data densities $(0.05{\le}d.d.{\le}5)$ and turbulence levels(t.i.=30%, 100%). As an improved version of the spectral estimator, the utility of POCS (the projection onto convex sets) has been tested in the present study. This algorithm is found useful to be in the region when $d.d.{\gep}3.$

Near-Infrared Spectral Characteristics in Presence of Sun Glint Using CASI-1500 Data in Shallow Waters

  • Jeon, Joo-Young;Kim, Sun-Hwa;Yang, Chan-Su
    • Korean Journal of Remote Sensing
    • /
    • v.31 no.4
    • /
    • pp.281-291
    • /
    • 2015
  • Sun glint correction methods of hyperspectral data that have been developed so far have not considered the various situations and are often adequate for only certain conditions. Also there is an inaccurate assumption that the signal in NIR wavelength is zero. Therefore, this study attempts to analyze the NIR spectral properties of sun glint effect in coastal waters. For the analysis, CASI-1500 airborne hyperspectral data, bathymetry data and in-situ data obtained at coastal area near Sin-Cheon, Jeju Island, South Korea were used. The spectral characteristics of radiance and reflectance at the five NIR wavelengths (744 nm, 758 nm, 772 nm, 786 nm, and 801 nm) are analyzed by using various statistics, spatial and spectral variation of sun-glinted area under conditions of the bottom types of benthos, barren rocks and sand with similar water depth. Through the quantitative analysis, we found that the relation of water depth or bottom type with sun glint is relatively less which is a similar result with the previous studies. However the sun glint are distributed similarly with the patterns of the direction of wave propagation. It is confirmed that the areas with changed direction of wave propagation were not affected by the sun glint. The spatial and spectral variations of radiance and reflectance are mainly caused by the effect of sun glint and waves. The radiance or reflectance of more sun-glinted areas are increased approximately 1.5 times and the standard deviations are also increased three times compared to the less sun glinted areas. Through this study, the further studies of sun glint correction method in coastal water using the patterns of wave propagation and diffraction will be placed.

Hyperspectral Image Fusion Algorithm Based on Two-Stage Spectral Unmixing Method (2단계 분광혼합기법 기반의 하이퍼스펙트럴 영상융합 알고리즘)

  • Choi, Jae-Wan;Kim, Dae-Sung;Lee, Byoung-Kil;Yu, Ki-Yun;Kim, Yong-Il
    • Korean Journal of Remote Sensing
    • /
    • v.22 no.4
    • /
    • pp.295-304
    • /
    • 2006
  • Image fusion is defined as making new image by merging two or more images using special algorithms. In case of remote sensing, it means fusing multispectral low-resolution remotely sensed image with panchromatic high-resolution image. Generally, hyperspectral image fusion is accomplished by utilizing fusion technique of multispectral imagery or spectral unmixing model. But, the former may distort spectral information and the latter needs endmember data or additional data, and has a problem with not preserving spatial information well. This study proposes a new algorithm based on two stage spectral unmixing model for preserving hyperspectral image's spectral information. The proposed fusion technique is implemented and tested using Hyperion and ALI images. it is shown to work well on maintaining more spatial/spectral information than the PCA/GS fusion algorithms.