• Title/Summary/Keyword: Spectral Data

Search Result 2,633, Processing Time 0.031 seconds

Spectral clustering based on the local similarity measure of shared neighbors

  • Cao, Zongqi;Chen, Hongjia;Wang, Xiang
    • ETRI Journal
    • /
    • v.44 no.5
    • /
    • pp.769-779
    • /
    • 2022
  • Spectral clustering has become a typical and efficient clustering method used in a variety of applications. The critical step of spectral clustering is the similarity measurement, which largely determines the performance of the spectral clustering method. In this paper, we propose a novel spectral clustering algorithm based on the local similarity measure of shared neighbors. This similarity measurement exploits the local density information between data points based on the weight of the shared neighbors in a directed k-nearest neighbor graph with only one parameter k, that is, the number of nearest neighbors. Numerical experiments on synthetic and real-world datasets demonstrate that our proposed algorithm outperforms other existing spectral clustering algorithms in terms of the clustering performance measured via the normalized mutual information, clustering accuracy, and F-measure. As an example, the proposed method can provide an improvement of 15.82% in the clustering performance for the Soybean dataset.

A structural model updating method using incomplete power spectral density function and modal data

  • Esfandiari, Akbar;Chaei, Maryam Ghareh;Rofooei, Fayaz R.
    • Structural Engineering and Mechanics
    • /
    • v.68 no.1
    • /
    • pp.39-51
    • /
    • 2018
  • In this study, a frequency domain model updating method is presented using power spectral density (PSD) data. It uses the sensitivity of PSD function with respect to the unknown structural parameters through a decomposed form of transfer function. The stiffness parameters are captured with high accuracy through solving the sensitivity equations utilizing the least square approach. Using numerically noise polluted data, the model updating results of a truss model prove robustness of the method against measurement and mass modelling errors. Results prove the capabilities of the method for parameter estimation using highly noise polluted data of low ranges of excitation frequency.

Hybrid Coding for Multi-spectral Satellite Image Compression (다중스펙트럼 위성영상 압축을 위한 복합부호화 기법)

  • Jung, Kyeong-Hoon
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.3 no.1
    • /
    • pp.1-11
    • /
    • 2000
  • The hybrid coding algorithm for multi-spectral image obtained from satellite is discussed. As the spatial and spectral resolution of satellite image are rapidly increasing, there are enormous amounts of data to be processed for computer processing and data transmission. Therefore an efficient coding algorithm is essential for multi-spectral image processing. In this paper, VQ(vector quantization), quadtree decomposition, and DCT(discrete cosine transform) are combined to compress the multi-spectral image. VQ is employed for predictive coding by using the fact that each band of multi-spectral image has the same spatial feature, and DCT is for the compression of residual image. Moreover, the image is decomposed into quadtree structure in order to allocate the data bit according to the information content within the image block to improve the coding efficiency. Computer simulation on Landsat TM image shows the validity of the proposed coding algorithm.

  • PDF

Derivation and Comparison of Narrow and Broadband Algorithms for the Retrieval of Ocean Color Information from Multi-Spectral Camera on Kompsat-2 Satellite

  • Ahn, Yu-Hwan;Shanmugam, Palanisamy;Ryu, Joo-Hyung;Moon, Jeong-Eom
    • Korean Journal of Remote Sensing
    • /
    • v.21 no.3
    • /
    • pp.173-188
    • /
    • 2005
  • The present study aims to derive and compare narrow and broad bandwidths of ocean color sensor’s algorithms for the study of monitoring highly dynamic coastal oceanic environmental parameters using high-resolution imagery acquired from Multi-spectral Camera (MSC) on KOMPSAT-2. These algorithms are derived based on a large data set of remote sensing reflectances ($R_{rs}$) generated by using numerical model that relates $b_b/(a + b_b)$ to $R_{rs}$ as functions of inherent optical properties, such as absorption and backscattering coefficients of six water components including water, phytoplankton (chl), dissolved organic matter (DOM), suspended sediment (SS) concentration, heterotropic organism (he) and an unknown component, possibly represented by bubbles or other particulates unrelated to the first five components. The modeled $R_{rs}$ spectra appear to be consistent with in-situ spectra collected from Korean waters. As Kompsat-2 MSC has similar spectral characteristics with Landsat-5 Thematic Mapper (TM), the model generated $R_{rs}$ values at 2 ㎚ interval are converted to the equivalent remote sensing reflectances at MSC and TM bands. The empirical relationships between the spectral ratios of modeled $R_{rs}$ and chlorophyll concentrations are established in order to derive algorithms for both TM and MSC. Similarly, algorithms are obtained by relating a single band reflectance (band 2) to the suspended sediment concentrations. These algorithms derived by taking into account the narrow and broad spectral bandwidths are compared and assessed. Findings suggest that there was less difference between the broad and narrow band relationships, and the determination coefficient $(r^2)$ for log-transformed data [ N = 500] was interestingly found to be $(r^2)$ = 0.90 for both TM and MSC. Similarly, the determination coefficient for log-transformed data [ N = 500] was 0.93 and 0.92 for TM and MSC respectively. The algorithms presented here are expected to make significant contribution to the enhanced understanding of coastal oceanic environmental parameters using Multi-spectral Camera.

Spectral Reflectivity Recovery from Tristimulus Values Using 3D Extrapolation with 3D Interpolation

  • Kim, Bog G.;Werner, John S.;Siminovitch, Michael;Papamichael, Kostantinos;Han, Jeongwon;Park, Soobeen
    • Journal of the Optical Society of Korea
    • /
    • v.18 no.5
    • /
    • pp.507-516
    • /
    • 2014
  • We present a hybrid method for spectral reflectivity recovery, using 3D extrapolation as a supplemental method for 3D interpolation. The proposed 3D extrapolation is an extended version of 3D interpolation based on the barycentric algorithm. It is faster and more accurate than the conventional spectral-recovery techniques of principal-component analysis and nonnegative matrix transformation. Four different extrapolation techniques (based on nearest neighbors, circumcenters, in-centers, and centroids) are formulated and applied to recover spectral reflectivity. Under the standard conditions of a D65 illuminant and 1964 $10^{\circ}$ observer, all reflectivity data from 1269 Munsell color chips are successfully reconstructed. The superiority of the proposed method is demonstrated using statistical data to compare coefficients of correlation and determination. The proposed hybrid method can be applied for fast and accurate spectral reflectivity recovery in image processing.

Generalized IHS-Based Satellite Imagery Fusion Using Spectral Response Functions

  • Kim, Yong-Hyun;Eo, Yang-Dam;Kim, Youn-Soo;Kim, Yong-Il
    • ETRI Journal
    • /
    • v.33 no.4
    • /
    • pp.497-505
    • /
    • 2011
  • Image fusion is a technical method to integrate the spatial details of the high-resolution panchromatic (HRP) image and the spectral information of low-resolution multispectral (LRM) images to produce high-resolution multispectral images. The most important point in image fusion is enhancing the spatial details of the HRP image and simultaneously maintaining the spectral information of the LRM images. This implies that the physical characteristics of a satellite sensor should be considered in the fusion process. Also, to fuse massive satellite images, the fusion method should have low computation costs. In this paper, we propose a fast and efficient satellite image fusion method. The proposed method uses the spectral response functions of a satellite sensor; thus, it rationally reflects the physical characteristics of the satellite sensor to the fused image. As a result, the proposed method provides high-quality fused images in terms of spectral and spatial evaluations. The experimental results of IKONOS images indicate that the proposed method outperforms the intensity-hue-saturation and wavelet-based methods.

Study on Plastics Detection Technique using Terra/ASTER Data

  • Syoji, Mizuhiko;Ohkawa, Kazumichi
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.1460-1463
    • /
    • 2003
  • In this study, plastic detection technique was developed, applying remote sensing technology as a method to extract plastic wastes, which is one of the big causes of concern contributing to environmental destruction. It is possible to extract areas where plastic (including polypropylene and polyethylene) wastes are prominent, using ASTER data by taking advantage of its absorptive characteristics of ASTER/SWIR bands. The algorithm is applicable to define large industrial wastes disposal sites and areas where plastic greenhouses are concentrated. However, the detection technique with ASTER/SWIR data has some research tasks to be tackled, which includes a partial secretion of reference spectral, depending on some conditions of plastic wastes and a detection error in a region mixed with vegetations and waters. Following results were obtained after making comparisons between several detection methods and plastic wastes in different conditions; (a)'spectral extraction method' was suitable for areas where plastic wastes exist separated from other objects, such as coastal areas where plastic wastes drifted ashore. (single plastic spectral was used as a reference for the 'spectral extraction method') (b)On the other hand, the 'spectral extraction method' was not suitable for sites where plastic wastes are mixed with vegetation and soil. After making comparison of the processing results of a mixed area, it was found that applying both 'separation method' using un-mixing and ‘spectral extraction method’ with NDVI masked is the most appropriate method to extract plastic wastes. Also, we have investigated the possibility of reducing the influence of vegetation and water, using ASTER/TIR, and successfully extracted some places with plastics. As a conclusion, we have summarized the relationship between detection techniques and conditions of plastic wastes and propose the practical application of remote sensing technology to the extraction of plastic wastes.

  • PDF

Approximate Overdetermined Method for Spectral Estimation (스펙트럼 추정을 위한 근사 과결정 방식)

  • 이철희;정찬수;양흥석
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.37 no.4
    • /
    • pp.232-239
    • /
    • 1988
  • The approximate overdetermined method is proposed for high resolution spectral estimation in case of short data record length or narrow band signal. And a new recursive AR parameter estimation is derived in the form of fast algorithm. For ARMA spectral estimation, two stage procedure is used in estimating ARMA parameters. First AR parameters are estimated by using the modified Yule-Walker equations, and then MA parameters are implicitly estimated by estimating numerator spectral(NS) coefficients.

  • PDF

Spectral Behaviors of Unidirectional Lasing from Various Semiconductor Square Ring Microcavities

  • Moon, Hee-Jong;Hyun, Kyung-Sook;Lim, Changhwan
    • Journal of the Korean Physical Society
    • /
    • v.73 no.10
    • /
    • pp.1506-1511
    • /
    • 2018
  • Spectral behaviors of lasing from semiconductor square ring microcavities with structures for unidirectional laser oscillation were investigated. When a tapered structure was introduced, the lasing envelope shifted to a shorter wavelength region. Statistical estimate of the additional loss caused by the tapered structure was carried out by analyzing spectral data from many sets of cavities with various sizes. When a saw-edged structure was introduced, the unidirectional lasing functioned well but no apparent spectral shift was observed due to negligible additional loss.

Current Status of Hyperspectral Remote Sensing: Principle, Data Processing Techniques, and Applications (초분광 원격탐사의 특성, 처리기법 및 활용 현용)

  • Kim Sun-Hwa;Ma Jung-Rim;Kook Min-Jung;Lee Kyu-Sung
    • Korean Journal of Remote Sensing
    • /
    • v.21 no.4
    • /
    • pp.341-369
    • /
    • 2005
  • Hyperspectral images have emerged as a new and promising remote sensing data that can overcome the limitations of existing optical image data. This study was designed to provide a comprehensive review on definition, data processing methods, and applications of hyperspectral data. Various types of airborne, spaceborne, and field hyperspectral image sensors were surveyed from the available literatures and internet search. To understand the current status of hyperspectral remote sensing technology and research development, we collected several hundreds research papers from international journals (IEEE Transactions on Geoscience and Remote Sensing, International Journal of Remote Sensing, Remote Sensing of Environment and AVIRIS Workshop Proceedings), and categorized them by sensor types, data processing techniques, and applications. Although several hyperspectral sensors have been developing, AVIRIS has been a primary data source that the most hyperspectral remote sensing researches were relied on. Since hyperspectral data have very large data volume with many spectral bands, several data processing techniques that are particularly oriented to hyperspectral data have been developed. Although atmospheric correction, spectral mixture analysis, and spectral feature extraction are among those processing techniques, they are still in experimental stage and need further refinement until the fully operational adaptation. Geology and mineral exploration were major application in early stage of hyperspectral sensing because of the distinct spectral features of rock and minerals that could be easily observed with hyperspectral data. The applications of hyperspectral sensing have been expanding to vegetation, water resources, and military areas where the multispectral sensing was not very effective to extract necessary information.