• Title/Summary/Keyword: Specificity protein 1

Search Result 348, Processing Time 0.029 seconds

Detection of Human Anti-Trypanosoma cruzi Antibody with Recombinant Fragmented Ribosomal P Protein

  • Kim, Yeong Hoon;Yang, Zhaoshou;Lee, Jihoo;Ahn, Hye-Jin;Chong, Chom-Kyu;Maricondi, Wagner;Dias, Ronaldo F.;Nam, Ho-Woo
    • Parasites, Hosts and Diseases
    • /
    • v.57 no.4
    • /
    • pp.435-437
    • /
    • 2019
  • Chagas disease is caused by the protozoan parasite Trypanosoma cruzi, and is endemic in many Latin American countries. Diagnosis is based on serologic testing and the WHO recommends two or more serological tests for confirmation. Acidic ribosomal P protein of T. cruzi showed strong reactivity against positive sera of patients, and we cloned the protein after fragmenting it to enhance its antigenicity and solubility. Twelve positive sera of Chagas disease patients were reacted with the fragmented ribosomal P protein using western blot. Detection rate and density for each fragment were determined. Fragments F1R1, F1R2, and F2R1 showed 100% rate of detection, and average density scoring of 2.00, 1.67, and 2.42 from a maximum of 3.0, respectively. Therefore, the F2R1 fragment of the ribosomal P protein of T. cruzi could be a promising antigen to use in the diagnosis of Chagas disease in endemic regions with high specificity and sensitivity.

The Ligand Occupancy of Endothelial Protein C Receptor Switches the Signaling Specificity of Thrombin from a Disruptive to a Protective Response in Endothelial Cells

  • Bae, Jong-Sup;Kim, Yong-Ung;Park, Moon-Ki
    • Proceedings of the Korean Environmental Sciences Society Conference
    • /
    • 2008.11a
    • /
    • pp.538-544
    • /
    • 2008
  • Activated protein C (APC) is thought to exert antiinflammatory activities through the endothelial protein C receptor (EPCR)-dependent cleavage of protease activated receptor 1 (PAR-1) in endothelial cells. Since thrombin cleaves PAR-1 with $\sim$3-4-orders of magnitude higher efficiency, and PAR-1 is a target for proinflammatory activities of thrombin, it is not understood how APC can elicit protective responses through the cleavage of PAR-1. In this study, we demonstrate that EPCR is associated with caveolin-1 in endothelial lipid rafts, but its occupancy by protein C leads to its dissociation from caveolin-1 and subsequent recruitment of PAR-1 to protective signaling pathways through the coupling of PAR-1 to Gi-protein. When EPCR is bound by protein C, the PAR-1-dependent protective response in endothelial cells can be mediated by either thrombin or APC. These results provide a new paradigm for understanding the mechanism through which PAR-1 and EPCR participate in cellular signaling events in endothelial cells.

  • PDF

Effect of Mutagenesis of V111 and L112 on the Substrate Specificity of Zymomonas mobilis Pyruvate Decarboxylase

  • Huang, Chang-Yi;Nixon, Peter F.;Duggleby, Ronald G.
    • BMB Reports
    • /
    • v.32 no.1
    • /
    • pp.39-44
    • /
    • 1999
  • Pyruvate decarboxylase (PDC) catalyzes the conversion of pyruvate to acetaldehyde as the penultimate step in alcohol fermentation. The enzyme requires two cofactors, thiamin diphosphate (ThDP) and $Mg^{2+}$, for activity. Zymomonas mobilis PDC shows a strong preference for pyruvate although it will use the higher homologues 2-ketobutyrate and 2-ketovalerate to some extent. We have investigated the effect of mutagenesis of valine 111 and leucine 112 on the substrate specificity. V111 was replaced by glycine, alanine, leucine, and isoleucine while L112 was replaced by alanine, valine, and isoleucine. With the exception of L112I, all mutants retain activity towards pyruvate with $k_{cat}$ values ranging from 40% to 139% of wild-type. All mutants show changes from wild-type in the affinity for ThDP, and several (V111A, L112A, and L112V) show decreases in the affinity for $Mg^{2+}$. Two of the mutants, V111G and V111A, show an increase in the $K_m$ for pyruvate. The activity of each mutant towards 2-ketobutyrate and 2-ketovalerate was investigated and some changes from wild-type were found. For the V111 mutants, the most notable of these is a 3.7-fold increase in the ability to use 2-ketovalerate. However, the largest effect is observed for the L112V mutation which increases the ability to use both 2-ketobutyrate (4.3-fold) and 2-ketovalerate (5.7-fold). The results suggest that L112 and, to a lesser extent, V111 are close to the active site and may interact with the alkyl side-chain of the substrate.

  • PDF

Production and Characterization of Monoclonal Antibodies to Yeast Mitochondrial RNA Polymerase Specificity Factor

  • Lee, Chang-Hwan;Jang, Sei-Heon
    • BMB Reports
    • /
    • v.31 no.6
    • /
    • pp.607-610
    • /
    • 1998
  • Transcription of mitochondrial DNA in the yeast S. cerevisiae depends on recognition of a consensus nonanucleotide promoter sequence by mitochondrial RNA polymerase specificity factor, which is a 43 kDa polypeptide encoded by the nuclear MTF1 gene. Mtf1p has only limited amino acid sequence homology to bacterial sigma factors, but functions in many ways like sigma in that it is required for promoter recognition and initiation of transcription. To analyze the corebinding region of Mtf1p, monoclonal antibodies to this protein were prepared. Recombinant Mtf1p overproduced in E. coli was purified to near homogeneity and used to raise monoclonal antibodies (mAbs). From fused cells screened for Mtf1p mAbs by immunodot blot analysis, 19 positive clones were initially isolated. Further analysis of positive clones by Western blotting resulted in 4 mAbs of Mtf1p.

  • PDF

Cross-reactivity of Human Polyclonal Anti-GLUT1 Antisera with the Endogenous Insect Cell Glucose Transporters and the Baculovirus-expressed GLUT1

  • Lee, Chong-Kee
    • Biomedical Science Letters
    • /
    • v.7 no.4
    • /
    • pp.161-166
    • /
    • 2001
  • Most mammalian cells take up glucose by passive transport proteins in the plasma membranes. The best known of these proteins is the human erythrocyte glucose transporter, GLUT1. High levels of heterologous expression far the transporter are necessary for the investigation of its three-dimensional structure by crystallization. To achieve this, the baculovirus expression system has become popular choice. However, Spodoptera frugiperda Clone 9 (Sf9) cells, which are commonly employed as the host permissive cell line to support baculovirus replication and protein synthesis, grow well on TC-100 medium that contains 0.1% D-glucose as the major carbon source, suggesting the presence of endogenous glucose transporters. Furthermore, very little is known of the endogenous transporters properties of Sf9 cells. Therefore, human GLUT1 antibodies would play an important role for characterization of the GLUT1 expressed in insect cell. However, the successful use of such antibodies for characterization of GLUT1 expression m insect cells relies upon their specificity for the human protein and lack of cross-reaction with endogenous transporters. It is therefore important to determine the potential cross-reactivity of the antibodies with the endogenous insect cell glucose transporters. In the present study, the potential cross-reactivity of the human GLUT1 antibodies with the endogenous insect cell glucose transporters was examined by Western blotting. Neither the antibodies against intact GLUT1 nor those against the C-terminus labelled any band migrating in the region expected fur a protein of M$_r$ comparable to GLUT1, whereas these antibodies specifically recognized the human GLUT1. Specificity of the human GLUT1 antibodies tested was also shown by cross-reaction with the GLUT1 expressed in insect cells. In addition, the insect cell glucose transporter was found to have very low affinity for cytochalasin B, a potent inhibitor of human erythrocyte glucose transporter.

  • PDF

A Novel Approach for Assessing the Proteolytic Potential of Filamentous Fungi on the Example of Aspergillus spp.

  • Anna Shestakova;Alexander Osmolovskiy;Viktoria Lavrenova;Daria Surkova;Biljana Nikolic;Zeljko Savkovic
    • Microbiology and Biotechnology Letters
    • /
    • v.51 no.4
    • /
    • pp.457-464
    • /
    • 2023
  • Proteolytic enzymes produced by filamentous fungi can degrade various fibrous and globular proteins along with other metabolites that may also find application in biotechnology. In this study, the effect of proteolytic enzymes of 22 Aspergillus strains on various proteins was investigated using protein-containing diagnostic media. Subsequently, a new parameter estimating secreted proteinases specificity towards fibrous or globular proteins without its advanced biochemical research - index of severity of proteolytic action (ISPA) - was suggested. This index determines mycozymes specificity in following manner: its value increases with greater affinity to fibrous proteins, decreases if there is higher affinity to globular proteins. ISPA value was the lowest (0.52) for Aspergillus domesticus, indicating the highest specificity to globular proteins, the highest one (1.26) for A. glaucus, whose proteinases best hydrolyzed fibrous proteins. However, the highest overall proteolytic potential was observed for Aspergillus melleus. The ability to produce acid, alkali and extracellular pigments was evaluated for all isolated strains as well.

A Comparison of ROCK Inhibitors on Human Bone Marrow-Derived Mesenchymal Stem Cell Differentiation into Neuron-Like Cells

  • Lee, Hyun-Sun;Kim, Kwang-Sei;O, Eun-Ju;Joe, Young-Ae
    • Biomolecules & Therapeutics
    • /
    • v.18 no.4
    • /
    • pp.386-395
    • /
    • 2010
  • Bone marrow-derived mesenchymal stem cells (BM-MSC) are a multipotent cell population that can differentiate into neuron-like cells. Previously it has been reported that murine BM-MSC can differentiate into neuron-like cells by co-treatment with a Rho-associated kinase (ROCK) inhibitor -Y27632 and $CoCl_2$. In this study, we compared several ROCK inhibitors for the ability to induce human BM-MSCs to differentiate into neuron-like cells in the presence of $CoCl_2$. Y27632 with high specificity for ROCK at 1-30 ${\mu}M$ was best at inducing neuronal differentiation of MSCs. Compared to HA1077 and H1152, which also effectively induced morphological change into neuron-like cells, Y27632 showed less toxicity even at 100 ${\mu}M$, and resulted in longer multiple branching processes at a wide range of concentrations at 6 h and 72 h post-induction. H89, however, which has less specificity by inhibition of protein kinase A, S6 kinase 1 and MSK1 with similar or greater potency, was less effective at inducing neuronal differentiation of MSCs. Simvastatin, which can inhibit Rho, Ras, and Rac by blocking the synthesis of isoprenoid intermediates, showed little activity for inducing morphological changes of MSCs into neuron-like cells. Accordingly, the expression patterns for neuronal cell markers,including ${\beta}$-tubulin III, neuron-specific enolase, neurofilament, and microtubule-associated protein, were consistent with the pattern of the morphological changes. The data suggest that the ROCK inhibitors with higher specificity are more effective at inducing neuronal differentiation of MSCs.

Development of a Rapid Diagnostic Test Kit to Detect IgG/IgM Antibody against Zika Virus Using Monoclonal Antibodies to the Envelope and Non-structural Protein 1 of the Virus

  • Kim, Yeong Hoon;Lee, Jihoo;Kim, Young-Eun;Chong, Chom-Kyu;Pinchemel, Yanaihara;Reisdorfer, Francis;Coelho, Joyce Brito;Dias, Ronaldo Ferreira;Bae, Pan Kee;Gusmao, Zuinara Pereira Maia;Ahn, Hye-Jin;Nam, Ho-Woo
    • Parasites, Hosts and Diseases
    • /
    • v.56 no.1
    • /
    • pp.61-70
    • /
    • 2018
  • We developed a Rapid Diagnostic Test (RDT) kit for detecting IgG/IgM antibodies against Zika virus (ZIKV) using monoclonal antibodies to the envelope (E) and non-structural protein 1 (NS1) of ZIKV. These proteins were produced using baculovirus expression vector with Sf9 cells. Monoclonal antibodies J2G7 to NS1 and J5E1 to E protein were selected and conjugated with colloidal gold to produce the Zika IgG/IgM RDT kit (Zika RDT). Comparisons with ELISA, plaque reduction neutralization test (PRNT), and PCR were done to investigate the analytical sensitivity of Zika RDT, which resulted in 100% identical results. Sensitivity and specificity of Zika RDT in a field test was determined using positive and negative samples from Brazil and Korea. The diagnostic accuracy of Zika RDT was fairly high; sensitivity and specificity for IgG was 99.0 and 99.3%, respectively, while for IgM it was 96.7 and 98.7%, respectively. Cross reaction with dengue virus was evaluated using anti-Dengue Mixed Titer Performance Panel (PVD201), in which the Zika RDT showed cross-reactions with DENV in 16.7% and 5.6% in IgG and IgM, respectively. Cross reactions were not observed with West Nile, yellow fever, and hepatitis C virus infected sera. Zika RDT kit is very simple to use, rapid to assay, and very sensitive, and highly specific. Therefore, it would serve as a choice of method for point-of-care diagnosis and large scale surveys of ZIKV infection under clinical or field conditions worldwide in endemic areas.

Specificity Protein 1 Expression Contributes to Bcl-w-Induced Aggressiveness in Glioblastoma Multiforme

  • Lee, Woo Sang;Kwon, Junhye;Yun, Dong Ho;Lee, Young Nam;Woo, Eun Young;Park, Myung-Jin;Lee, Jae-Seon;Han, Young-Hoon;Bae, In Hwa
    • Molecules and Cells
    • /
    • v.37 no.1
    • /
    • pp.17-23
    • /
    • 2014
  • We already had reported that Bcl-w promotes invasion or migration in gastric cancer cells and glioblastoma multiforme (GBM) by activating matrix metalloproteinase-2 (MMP-2) via specificity protein 1 (Sp1) or ${\beta}$-cateinin, respectively. High expression of Bcl-w also has been reported in GBM which is the most common malignant brain tumor and exhibits aggressive and invasive behavior. These reports propose that Bcl-w-induced signaling is strongly associated with aggressive characteristic of GBM. We demonstrated that Sp1 protein or mRNA expression is induced by Bcl-w using Western blotting or RT-PCR, respectively, and markedly elevated in high-grade glioma specimens compared with low-grade glioma tissues using tissue array. However, relationship between Bcl-w-related signaling and aggressive characteristic of GBM is poorly characterized. This study suggested that Bcl-w-induced Sp1 activation promoted expression of glioma stem-like cell markers, such as Musashi, Nanog, Oct4 and sox-2, as well as neurosphere formation and invasiveness, using western blotting, neurosphere formation assay, or invasion assay, culminating in their aggressive behavior. Therefore, Bcl-w-induced Sp1 activation is proposed as a putative marker for aggressiveness of GBM.

Development and Clinical Evaluation of a Rapid Diagnostic Test for Yellow Fever Non-Structural Protein 1

  • Kim, Yeong Hoon;Kim, Tae-Yun;Park, Ji-Seon;Park, Jin Suk;Lee, Jihoo;Moon, Joungdae;Chong, Chom-Kyu;Neves, Ivan Junior;Ferry, Fernando Raphael;Ahn, Hye-Jin;Bhatt, Lokraj;Nam, Ho-Woo
    • Parasites, Hosts and Diseases
    • /
    • v.57 no.3
    • /
    • pp.283-290
    • /
    • 2019
  • A rapid diagnostic test (RDT) kit was developed to detect non-structural protein 1 (NS1) of yellow fever virus (YFV) using monoclonal antibody. NS1 protein was purified from the cultured YFV and used to immunize mice. Monoclonal antibody to NS1 was selected and conjugated with colloidal gold to produce the YFV NS1 RDT kit. The YFV RDTs were evaluated for sensitivity and specificity using positive and negative samples of monkeys from Brazil and negative human blood samples from Korea. Among monoclonal antibodies, clones 3A11 and 3B7 proved most sensitive, and used for YFV RDT kit. Diagnostic accuracy of YFV RDT was fairly high; Sensitivity was 0.0% and specificity was 100% against Dengue viruses type 2 and 3, Zika, Chikungunya and Mayaro viruses. This YFV RDT kit could be employed as a test of choice for point-of-care diagnosis and large scale surveys of YFV infection under clinical or field conditions in endemic areas and on the globe.