• Title/Summary/Keyword: Specific volume change

Search Result 184, Processing Time 0.026 seconds

A Study on the Change of Volume and Temperature in Aqueous Binary Solvent with Ethanol (물과 에탄을 이성분 혼합용매 계에서 부피 및 온도 변화에 관한 연구)

  • 김용권;임귀택
    • Journal of Korean Elementary Science Education
    • /
    • v.20 no.1
    • /
    • pp.139-147
    • /
    • 2001
  • This paper is to study on the change of volume and temperature of the solution which mixed water with ethanol. And its main purpose is to examine closely how the volume changes, and to find the method to maximize the change of the volume. The summaries for results of the study are; First, we were known that water and ethanol are homogeneously mixed. But two solvents does not mix homogeneously by different specific gravity at early stages. Second, we could see that the volume changed large at homogeneous mixed water with ethanol by stirrer, the change of volume is the largest value when water mixed with ethanol in the ratio of one to one. Third, when water mixed with ethanol in the ratio of one to one, the change of temperature is very large by activated hydrogen bond. We conclude that it is the best result when ratio of water and ethanol is one to one and the solution is well mixed.

  • PDF

Change of pore structure and uniaxial compressive strength of sandstone under electrochemical coupling

  • Chai, Zhaoyun;Bai, Jinbo;Sun, Yaohui
    • Geomechanics and Engineering
    • /
    • v.17 no.2
    • /
    • pp.157-164
    • /
    • 2019
  • The effect of electrochemical modification of the physical and mechanical properties of sandstone from Paleozoic coal measure strata was investigated by means of liquid nitrogen physical adsorption, X-ray diffraction and uniaxial compressive strength (UCS) tests using purified water, 1 mol/L NaCl, 1 mol/L $CaCl_2$ and 1 mol/L $AlCl_3$ aqueous solution as electrolytes. Electrochemical corrosion of electrodes and wire leads occurred mainly in the anodic zone. After electrochemical modification, pore morphology showed little change in distribution, decrease in total pore specific surface area and volume, and increased average pore diameter. The total pore specific surface area in the anodic zone was greater than in the cathodic zone, but total pore volume was less. Mineralogical composition was unchanged by the modification. Changes in UCS were caused by a number of factors, including corrosion, weakening by aqueous solutions, and electrochemical cementation, and electrochemical cementation stronger than corrosion and weakening by aqueous solutions.

A Study on HEMT Device Process (Part II. Ohmic Contact Resistance in GaAs/AlGaAs Hetero-Structure) (HEMT소자 공정 연구 (Part II. HEMT 구조에서의 Online 접촉저항))

  • 이종람;이재진;박성호;김진섭;마동성
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.26 no.10
    • /
    • pp.1545-1553
    • /
    • 1989
  • The ohmic contact behavior in HEMT structure was compared with that in MESFET one throughout the specific contact resistance and microstructural change in both structures. A Au-Ge-Ni based metallization scheme was used and the alloying temperature of the ohmic materials was changed from 330\ulcorner to 550\ulcorner. The alloying temperature to obtain the minimum specific contact resistance in HEMT structure was 60k higher than that in MESFET. The volume fraction of NiAs (Ge) in MESFET structure increases with alloying temperature and/or the alloying time, which makes the decrease of specific contact resistance at the initial stage of ohmic metallization. In contrast, the volume fraction of NiAs(Ge) in HEMT structure was not dependent upon the specific contact resistance, which implies that the ohmic contacts are dominantly formed by the Ge diffusion to 2-DEG(two dimensional electron gas) layer.

  • PDF

Preparation of Porous Glasses by the Phase-separation of the Silicate Glass Containing $TiO_2$ ($TiO_2$를 함유한 규산염 유리의 상분리를 이용한 다공질 유리의 제조)

  • 김병훈;최석진;박태철
    • Journal of the Korean Ceramic Society
    • /
    • v.28 no.1
    • /
    • pp.29-36
    • /
    • 1991
  • Microporous glasses in the system TiO2-SiO2-Al2O3-B2O3-CaO-Na2O were prepared by the phase-separation technique. Morphology and distribution of pore and specific surface area of glasses heated and leached out at various conditions were investigated by SEM and Porosimeter. Crystallization of glasses heated above transition temperature was also inspected by X-ray diffraction method. When the heating temperature and time increased, the pore size and volume increased, but the specific surface area decreased above the critical temperature. The phase-separation, specific surface area and pore size showed more sensitive change on the variation of heating temperature than of heating time. The specific surface area and micropore volume of porous glasses prepared in this study were about 120-330$m^2$/g and 0.001-0.01cc/g, respectively. Mean pore size of porous glasses were about 20-90$\AA$. Anatase phases was deposited when the parent glass was heat-treated at 75$0^{\circ}C$ for 6hrs.

  • PDF

Development of Functional Bread with Sea Tangle Single Cell Detritus (SCD) (다시마 Single Cell Detritus(SCD)를 첨가한 기능성 빵의 개발)

  • Bang, Sang-Jin;Choi, Seung-Hwa;Shin, Il-Shik;Kim, Sang-Moo
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.38 no.10
    • /
    • pp.1430-1437
    • /
    • 2009
  • Functional bread was manufactured with single cell detritus (SCD) of sea tangle. The optimum ingredient formula for SCD bread was determined based on mixture model. Flour and water reduced max weight, strength, hardness and specific loaf volume, whereas the increased SCD reversed the volume change of dough. Flour increased $L^*$ and $b^*$ values of SCD bread, while SCD decreased. Flour and water decreased $a^*$ value, while SCD increased. Max weight, strength, hardness, specific loaf volume, $b^*$ value and water holding capacity (WHC) were linear model on ANOVA table, whereas distance, volume change of dough, $L^*$ and $a^*$ values were nonlinear model. The response constraint coefficient showed that SCD influenced texture of SCD bread more than flour and water did, whereas water influenced the volume change of dough, specific loaf volume and WHC more than flour and SCD did. Moreover, flour influenced color value more than did water and SCD. Distance and $a^*$ value fitted nonlinear model with interaction terms for flour-SCD and water-SCD. Optimum ingredient formula for SCD bread was: flour, 48.25%; water, 30.89%; SCD, 3.86%. Sensory evaluation of SCD bread was a little lower than industrial bread and electrolyzed SCD bread.

A Study on Reversals after Stock Price Shock in the Korean Distribution Industry

  • Jeong-Hwan, LEE;Su-Kyu, PARK;Sam-Ho, SON
    • Journal of Distribution Science
    • /
    • v.21 no.3
    • /
    • pp.93-100
    • /
    • 2023
  • Purpose: The purpose of this paper is to confirm whether stocks belonging to the distribution industry in Korea have reversals, following large daily stock price changes accompanied by large trading volumes. Research design, data, and methodology: We examined whether there were reversals after the event date when large-scale stock price changes appeared for the entire sample of distribution-related companies listed on the Korea Composite Stock Price Index from January 2004 to July 2022. In addition, we reviewed whether the reversals differed depending on abnormal trading volume on the event date. Using multiple regression analysis, we tested whether high trading volume had a significant effect on the cumulative rate of return after the event date. Results: Reversals were confirmed after the stock price shock in the Korean distribution industry and the return after the event date varied depending on the size of the trading volume on the event day. In addition, even after considering both company-specific and event-specific factors, the trading volume on the event day was found to have significant explanatory power on the cumulative rate of return after the event date. Conclusions: Reversals identified in this paper can be used as a useful tool for establishing a trading strategy.

Electrochemical modification of the porosity and zeta potential of montmorillonitic soft rock

  • Wang, Dong;Kang, Tianhe;Han, Wenmei;Liu, Zhiping;Chai, Zhaoyun
    • Geomechanics and Engineering
    • /
    • v.2 no.3
    • /
    • pp.191-202
    • /
    • 2010
  • The porosity (including the specific surface area and pore volume-diameter distribution) of montmorillonitic soft rock (MSR) was studied experimentally with an electrochemical treatment, based on which the change in porosity was further analyzed from the perspective of its electrokinetic potential (${\zeta}$ potential) and the isoelectric point of the electric double layer on the surface of the soft rock particles. The variation between the ${\zeta}$ potential and porosity was summarized, and used to demonstrate that the properties of softening, degradation in water, swelling, and disintegration of MSR can be modified by electrochemical treatment. The following conclusions were drawn. The specific surface area and total pore volume decreased, whereas the average pore diameter increased after electrochemical modification. The reduction in the specific surface area indicates a reduction in the dispersibility and swelling-shrinking of the clay minerals. After modification, the ${\zeta}$ potential of the soft rock was positive in the anodic zone, there was no isoelectric point, and the rock had lost its properties of softening, degradation in water, swelling, and disintegration. The ${\zeta}$ potential increased in the intermediate and cathodic zones, the isoelectric point was reduced or unchanged, and the rock properties are reduced. When the ${\zeta}$ potential is increased, the specific surface area and the total pore volume were reduced according to the negative exponent law, and the average pore diameter increased according to the exponent law.

A Study on the Cooling Characteristics of TMA by an Additive (첨가제에 의한 TMA의 냉각특성에 대한 연구)

  • Chung Nak-Kyu;Kim Jin-Heung;Kim Chang-Oh;Kang Seung-Hyun
    • Journal of Energy Engineering
    • /
    • v.14 no.2 s.42
    • /
    • pp.117-122
    • /
    • 2005
  • This study is performed to investigate the cooling characteristics of TMA $25\;wt\%$ clathrate compound with an additive; the phase change temperature, the degree of supercooling, specific heat and the rate of volume change. The used additive is ethanol and the heat source temperature is $-7^{\circ}C$. Experimental results are as follows: 1) The phase change temperature is increased by $0.32\~0.96^{\circ}C$ during the cooling process of TMA $25\;wt\%$ clathrate compound with ethanol. 2) The degree of supercooling is repressed by $0.9^{\circ}C$ in case of TMA $25\;wt\%$ clathrate compound with $0.5\;wt\%$ ethanol. 3) The specific heat is increased by $0.19\;kJ/kg^{\circ}C$ in case of TMA $25\;wt\%$ clathrate compound with $0.l\;wt\%$ ethanol. 4) The rate of volume change is decreased by $1.15\~l.5\%$ in case of TMA $25\;wt\%$ clathrate compound with ethanol.

Development of Local Stem Volume Table for Pinus densiflora S. et Z. Using Tree Stem Taper Model (수간곡선 모델을 이용한 소나무의 지방별 수간재적표 개발)

  • Kang, Jin-Taek;Son, Yeong-Mo;Kim, So-Won;Lee, Sun-Jeoung;Park, Hyun
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.16 no.4
    • /
    • pp.327-335
    • /
    • 2014
  • Current volume tables might underestimate or overestimate the volumes of individual trees in a specific region because the tables were made using the data from broad regions within South Korea. Therefore, to solve this problem, this study was conducted to develop local stem volume tables reflecting the local growth pattern and properties using stem taper equations in the regions of Hongcheon and Yeongju. We developed the local stem volume table for Pinus densiflora, which is the widely planted species in South Korea. To derive the most suitable taper equation for estimating the stem volume of region, three models of Max & Burkhart, Kozak and Parresol et al. were applied and their fitness were statistically analyzed by using the Fitness Index, Bias, and Standard Error of Bias. The result showed that there is a significant difference among the three models, and the Fitness Index of the Kozak model was highest compared to the other models. Therefore, the Kozak model was chosen for generating stem taper equation and stem volume tables for P. densiflora. The result from the developed stem volume tables of each region was compared to the current stem volume tables with driven by the data of tree growth obtained throughout the nation. The result showed that there is a significant difference (0.000< ${\alpha}=0.05$) in two regions, Hongcheon and Yeongju, and also there is a significant difference (0.000< ${\alpha}=0.05$) between the two regions.

Preparation and Characterization of high-quality activated carbon by KOH activation of pitch precursors (KOH 활성화에 의한 피치계 고품질 활성탄의 제조 및 특성)

  • Lee, Eun-Ji;Kwon, Soon-Hyung;Choi, Poo-Reum;U, Jong-Pyo;Jung, Ji-Chul;Kim, Myung-Soo
    • Journal of the Korean Applied Science and Technology
    • /
    • v.31 no.3
    • /
    • pp.408-415
    • /
    • 2014
  • In order to prepare high-quality activated carbons (ACs), coal tar pitch (CTP), and mixtures of CTP and petroleum pitch (PP) were activated with KOH. The ACs prepared by activation of CTP in the range of $700{\sim}1000^{\circ}C$ for 1~5 h had very porous textures with large specific surface areas of $2470{\sim}3081m^2/g$. The optimal activation conditions of CTP were determined as CTP/KOH ratio of 1:4, activation temperature of $900^{\circ}C$, and activation time of 3 h. The obtained AC showed the highest micro-pore volume, and pretty high specific surface area and meso-pore volume. The micro-pore volumes and specific areas of activated mixtures of CTP and PP were similar to each other but the meso-pore volume could be increased. In order to change the degree of crystallinity of precursors before KOH activation process, the CTPs were carbonized in the range of $500{\sim}900^{\circ}C$. As the carbonization temperature increased, the specific surface area and pore volume of the activated ACs with the same activation conditions for CTP decreased dramatically. It was demonstrated that the increased pore size distribution of AC electrodes in the range of 1 to 2 nm plays an important role in the performance of electric double-layer capacitor.