• Title/Summary/Keyword: Specific substrate utilization rate

Search Result 17, Processing Time 0.027 seconds

Effects on Microbial Activity and Substrate Removal in Industrial Wastewater with Fluoride Content (산업폐수에서 불소함유가 미생물활성도 및 기질제거에 미치는 영향에 관한 연구)

  • Choi, Jung Su;Joo, Hyun Jong;Jin, Oh Suk
    • Journal of Korean Society on Water Environment
    • /
    • v.28 no.5
    • /
    • pp.717-722
    • /
    • 2012
  • Fluoride can be easily found in semiconductor and display industry. However, there is a lack of research for its effects on the related wastewater treatment. The objective of this study is to evaluate the microbial inhibitory effect by fluoride injection. The research entailed the assessment of removal efficiency of $TCOD_{Cr}$ according to the fluoride concentration and also the Specific Oxygen Uptake Rate (SOUR) was measured. The laboratory scale reactor was prepared and operated with the fluoride concentrations of 0, 10, 50, 100, and 200 mg/L based on concentrations frequently occurring in the wastewater. The results from this study showed that, as the fluoride concentration increase, the Specific Substrate Utilization Rate (SSUR) tend to decrease as expected. Also, the increase in fluoride concentrations resulted in the decrease in SOUR. It is determined that fluoride injection affects the microbial activity. Especially, The addition of above 200 mg/L fluoride into reactor caused rapidly decreased SSUR and SOUR due to the inhibitory effects of fluoride.

Applicability Study of Reactor Design in Sewage Treatment Plant using Specific Oxygen Uptake Rate (SOUR을 이용한 하수처리시설 포기조 설계 적용에 관한 연구)

  • Joo, Hyun Jong;Kim, Sung Chul;Lee, Kwang Hyun
    • Journal of Korean Society on Water Environment
    • /
    • v.26 no.1
    • /
    • pp.140-147
    • /
    • 2010
  • In existing design method for aeration tank water temperature was considered as governing variable for applying safety factor. This study tried a few new approach of aeration tank design using SOUR at various temperature conditions. Specific substrate utilization rate (U) and specific oxygen uptake rate (SOUR) both were analyzed at various temperature and SRT. The laboratory scale reactor was operated on various temperature ($10^{\circ}C$, $20^{\circ}C$, $25^{\circ}C$) and SRT (5day, 10day, 20day, 30day). In this study, SOUR tended to increase with the temperature increased. On the other hand, SOUR tended to decrease when SRT increased from 5 days to 30 days. Empirical equations were obtained SOUR=a/SRT+b and $SOUR=(a/m){\cdot}U+(b-a(n/m))$ from the relationship between SRT, U and SOUR. Empirical equations shows the possibility as a new design method for the aeration basin.

Abnormal Behavior of Ordinary Heterotrophic Organism Active Biomass at Different Substrate/Microorganisms Ratios in Batch Test (회분식 실험 Substrate/Microorganisms 비에 따른 종속영양미생물의 특이거동 연구)

  • Lee, Byung-Joon;Wentzel, M.C.;Ekama, G.A.;Min, Kyung-Sok
    • Journal of Korean Society on Water Environment
    • /
    • v.20 no.3
    • /
    • pp.197-205
    • /
    • 2004
  • Batch test methods have developed for a long time to measure kinetic and stoichiometric parameters which are required to perform steady state design and mathematical modelling of activated sludge processes. However, at various So/Xo ratios, abnormal behaviors of ordinary heterotrophic organism in batch tests have been reported in many researches. Thus, in this research, abnormal behaviors of heterotrophs in batch tests were investigated at various So/Xo conditions by measuring and interpreting oxygen utilization rate. As So/Xo ratio increased, the calculated values of maximum specific growth rates, ${\mu}_{H,max}$ and $K_{MP,max}$, increased. However, at a certain point of So/Xo (around 10mgCOD/mgMLAVSS), ${\mu}_{H,max}$ and $K_{MP,max}$ values started to decrease. According to this observation, three prominent behaviours of heterotrophs were identified at various So/Xo conditions. (1) At low So/Xo region (below 5 mgCOD/mgMLAVSS), the oxygen utilization rate of heterotrophs in batch tests were almost stable and consequently yielded lower maximum specific growth rate. (2) At high So/Xo region (up to 5~10 mgCOD/mgMLAVSS), oxygen utilization rate incresed sharply with time and indicated more upward curvature than the predicted OUR with conventional activated sludge model, which consists of single hetetrotrophs group. Thus, in this region, competition model of two organisms, fast-grower and slow-grower, seemed to be appropriate. (3) At extremely high So/Xo region (over 10mgCOD/mgMLAVSS), significant oxygen utilization rate was still observed even after depletion of readily biodegradable COD. This might be caused by retarded utilization of intermediates which were generated by self inhibition mechanism in the process of RBCOD uptake.

Wastewater Treatment and Biogas Production by Hydrogen Fermentation(I): Optimum Condition for Hydrogen Production (수소 발효에 의한 폐수처리 및 바이오가스 생산(I): 최적 수소 생산 조건)

  • 선용호;한정우박돈희조영일
    • KSBB Journal
    • /
    • v.6 no.4
    • /
    • pp.351-361
    • /
    • 1991
  • This study is on the investigation of hydrogen production and substrate removal by photosynthetic bacteria. After using of Rhodospillum rubrum KS-301 and IFO 3986, which are photosynthetic bacteria as strains, R. rubrum KS-301 was turned out a better strain. And result of experiment in which glucose and sodium lactate, components of wastewater, were used limiting substrates, showed that the productivity of hydrogen was indifferent with the kind of substrates. In batch experiments using free cells and immobilized whole cells, the decrease in hydrogen productivity was observed in the latter case. From the results of these experiments, specific growth rate of cells, specific utilization rate of glucose, and specific production rate of hydrogen were calculated. And each rate was expressed in the form of Monod equation of which parameters were estimated. Also the optimum condition of hydrogen production for free cells was $30^{\circ}C$, pH 7, and 12,000 Lux, and the optimum immobilized condition was as follows: initial immobilized cell concentration 1.0g/L, sodium alginate concentration 2% and light intensity 12,000 Lux.

  • PDF

Temperature Dependence of the Kinetic Constants in Acidogenesis Process of Anaerobic Digestion (혐기성소화의 산발효과정에 있어서 동역학정수의 온도의존성)

  • Cha, Gi-Cheol;Jeong, Tae-Young;Yoo, Ik-Keun;Kim, Dong-Jin
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.29 no.7
    • /
    • pp.839-845
    • /
    • 2007
  • Temperature dependence of kinetic constants in the anaerobic acidogenesis was investigated using anaerobic chemostat-type reactor. Glucose was used as a substrate in this experiment. Temperature ranging from 15 to $30^{\circ}C$ were studied. The saturation constant$(k_s\upsilon)$ and growth yield(Y) decreased with increasing temperature, while the maximum specific substrate utilization rate$(\upsilon_{max})$ increased. A temperature correction factor$(Q_{10})$ values of the substrate utilization rate and bacteria growth rate were the range from 1.3 to 2.2 and 1.5 to 2.2, respectively. The growth yield(Y) for the acidogenesis process was less sensitive to temperature changes than the maximum specific substrate utilization rate$(\upsilon_{max})$. The simulation model of the relationship between the substrate and sludge retention time(SRT) at the temperature range of 20 to $30^{\circ}C$ is obtained as the following ; $1/SRT={(6.53){\cdot}(1.038)^{T-20}{\cdot}(S/X)}/{(1.38){\cdot}(0.983)^{T-20}+(S/X)}$.

Valuation of Molecular Weight Distribution Charteristics of Soluble Microbial Products(SMP) Using the Batch Filtration Test (회분여과 방식을 통한 생물대사산물의 분자량 분포 특성 평가)

  • 정태영;차기철;이영무;한상국
    • Membrane Journal
    • /
    • v.12 no.1
    • /
    • pp.21-27
    • /
    • 2002
  • The formation of soluble microbial products(SMP) and molecular weight distribution on loading rate were observed in batch-type culture medium, which phenol was fed as a substrate. The molecular weight destribution was obtained by using 30K, 100K dalton and $0.45{\mu}$ membrane filters. When the phenol concentrationas a substrate was 120, 230 and 440 mg/L , the specific substrate utilization rate(q) showed 0.639, 1.281 and 1.744 mgTOC/mgMLSS/day, respectively. The endogenous biomass decay rate constant($K_d$) at each substrate concentration was 0.00536, 0.0661 and 0.0749($day^1$), respectively. The $SMP_e$ product rate constant($k_{SMP}_ e$) showed 0.006, 0.0058 and 0.0057($day^1$), respectively. The initial influent substrate during the course of time degraded and produced $SMP_s$. The $SMP_s$ was converted to the $SMP_{nd}$ and endogenous phase converted to the $SMP_e$ ingredients. The molecula weight distribution on loading rate was converted to a higher MW during the course of time.

Degradation of Polyvinyl Alcohol in Dye-Processing Wastewater by Agar-Acrylamide Microbial Immobilization Method (한천-아크릴아마이드 미생물 고정화법에 의한 폐수 중 폴리비닐알콜의 분해)

  • 김재훈;김정목조무환
    • KSBB Journal
    • /
    • v.10 no.3
    • /
    • pp.241-248
    • /
    • 1995
  • For the treatment of poorly biodegradable polyvinyl alcohol(PVA) in dye-processing wastewater, immobilized microbial beads were prepared by uslng agar-acrylamide method. PVA removal efficiency for the synthetic wastewater was 85% at the PVA volume loading rate of $3.1g/\ell$.day. In case of real desizing wastewater, PVA removal efficiency was 81.3% at the PVA volume loading rate of $3.25g/\ell$.day. In observation of cross section of immobilized bead passed 5 months with diameter of 2.4mm, the growth of cell was limited by the resistance of substrate and oxygen transfer for the inners region of more than 48% of bead radius from the surface. It was estimated that 70% of total removed PVA was degraded by the immobilized cells in the continuous immobilized reactor. Substrate utilization rate in the suspended reactor was decreased with increasing dilution rates above 0.083 hr-1, but that in the immobilized reactor was increased with increasing dilution rates up to 0.125hr-1. The substrate removal efficiency of immobilized reactor was much superior to that of suspended reactor with increasing dilution rates. Saturation constant of substrate utilization rate equation, Ks was $6.6 g PVA/\ell$, and maximum specific substrate utilization. k was 0.175g PVA/g cell.hr

  • PDF

A Study on the Advanced Treatment Process Improvement through the Dewatering Application an Expressway Rest Area Individual Sewage Treatment Plant (휴게소 개인하수처리시설의 슬러지 탈수공정 적용에 통한 고도처리 개선 연구)

  • Choi, Yoo Hyun;Joo, Hyun Jong
    • Journal of Korean Society on Water Environment
    • /
    • v.33 no.1
    • /
    • pp.63-69
    • /
    • 2017
  • Small size privately owned wastewater treatment plants have been difficult to treat their wasted sludge and maintain steady effluent quality compared with publicly owned wastewater treatment plants. Therefore, this study has focused on treatment efficiency enhancement, specially nitrogen removal efficiency by recycling dewatering filtrate as an alkalinity additive from filter press using $CaCO_3$. As the result, it was found that the optimal mixing ratio between the excess sludge and $CaCO_3$ was 1:2. The major operation parameters such as specific substrate utilization rate, specific nitrification rate, and specific denitrification rate were also improved 64% ($0.048-0.079mg\;BOD_5/mg\;MLVSS{\cdot}day$), 35% ($0.020-0.027mg\;NH_3-N/mg\;MLVSS{\cdot}day$) and 68% ($0.051-0.086mg\;NO_3{^-}-N/mg\;MLVSS{\cdot}day$), respectively, after the adoption of new methods. Therefore, both the problem of sludge treatment at small scale plants and the need for efficiency improvement could be solved.

Organic Characteristic of Piggery Wastewater and Kinetic Estimation in Biofilm Reactor (생물막 반응조에서 돈사폐수의 유기물 특성 및 동력학계수 산정)

  • Rim, Jay-Myoung;Han, Dong-Joon;Kwon, Jae-Hyuk
    • Journal of Industrial Technology
    • /
    • v.16
    • /
    • pp.51-60
    • /
    • 1996
  • This research was performed for the fundamental data using a advanced treatment process of piggery wastewater. Characteristics of influent wastewater was divided with various methods in fixed biofilm batch reasctor. Fractons of organic were divided into readily biodegradable soluble COD(Ss), slowly biodegradable COD(Xs), nonbiodegradable soluble COD($S_I$), and nonbiodegradable suspended COD($X_I$). Experimental results were summerized as following : i) biodegradable organics fraction in piggery wastewater was about 88.1 percent, and fraction of readily biodegradable soluble COD was about 66.1 percent. ii) Fractions of nonbiodegradable soluble COD was 11~12 percent, and soluble inert COD by metabolism was producted about 6~8 percent. iii) Active biomass fraction of attached biofilm was about 54.7 percent, and substrate utilization rate and maximum specific growth rate of heterotrophs were $8.315d^{-1}$ and $3.823d^{-1}$, respectively.

  • PDF

Estimation of Kinetic Parameters for Biomass Growth Using Micro-nano Bubbles Reactor (마이크로-나노버블 반응조를 이용한 미생물성장 동력학 계수의 추정에 관한 연구)

  • Han, Young-Rip;Jung, Byung-Gil;Jung, Yoo-Jin;Cho, Do-Hyun;Sung, Nak-Chang
    • Journal of Environmental Science International
    • /
    • v.19 no.5
    • /
    • pp.647-653
    • /
    • 2010
  • The objectives of this research are to evaluate and compare the oxygen transfer coefficients($K_{La}$) in both a general bubbles reactor and a micro-nano bubbles reactor for effective operation in sewage treatment plants, and to understand the effect on microbial kinetic parameters of biomass growth for optimal biological treatment in sewage treatment plants when the micro-nano bubbles reactor is applied. Oxygen transfer coefficients($K_{La}$) of tap water and effluent of primary clarifier were determined. The oxygen transfer coefficients of the tap water for the general bubbles reactor and micro-nano bubbles reactor were found to be 0.28 $hr^{-1}$ and 2.50 $hr^{-1}$, respectively. The oxygen transfer coefficients of the effluent of the primary clarifier for the general bubbles reactor and micro-nano bubbles reactor were found be to 0.15 $hr^{-1}$ and 0.91 $hr^{-1}$, respectively. In order to figure out kinetic parameters of biomass growth for the general bubbles reactor and micro-nano bubbles reactor, oxygen uptake rates(OURs) in the saturated effluent of the primary clarifier were measured with the general bubbles reactor and micro-nano bubbles reactor. The OURs of in the saturated effluent of the primary clarifier with the general bubbles reactor and micro-nano bubbles reactor were 0.0294 mg $O_2/L{\cdot}hr$ and 0.0465 mg $O_2/L{\cdot}hr$, respectively. The higher micro-nano bubbles reactor's oxygen transfer coefficient increases the OURs. In addition, the maximum readily biodegradable substrate utilization rates($K_{ms}$) for the general bubbles reactor and micro-nano bubbles reactor were 3.41 mg COD utilized/mg active VSS day and 7.07 mg COD utilized/mg active VSS day, respectively. The maximum specific biomass growth rates for heterotrophic biomass(${\mu}_{max}$) were calculated by both values of yield for heterotrophic biomass($Y_H$) and the maximum readily biodegradable substrate utilization rates($K_{ms}$). The values of ${\mu}_{max}$ for the general bubbles reactor and micro-nano bubbles reactor were 1.62 $day^{-1}$ and 3.36 $day^{-1}$, respectively. The reported results show that the micro-nano bubbles reactor increased air-liquid contact area. This method could remove dissolved organic matters and nutrients efficiently and effectively.