• 제목/요약/키워드: Specific peak discharge

검색결과 32건 처리시간 0.031초

A Forecasting Model for the Flood Peak Stage and Flood Travel Time by Hydraulic Flood Routing

  • Yoon, Yong-Nam;Park, Moo-Jong
    • Korean Journal of Hydrosciences
    • /
    • 제4권
    • /
    • pp.11-19
    • /
    • 1993
  • The peak flood discharge at a downstream station and the flood travel time between a pair of dams due to a specific flood release from the upper reservoir are computed using a hydraulic river channel routing method. The study covered the whole large reservoir system in the Han River, Korea. The computed flood discharges and the travel times between dams were correlated with the duration and the magnitude of flood release rate at the upstream reservoir, and hence a multiple regression model is proposed for each river reach between a pair of dams. The peak flood discharge at a downstream location can be converted to the peak flood stage by a rating curve. Hence, the proposed regression model could be used to forecast the peak flood stage at a downstream location and the flood travel time between dams using the information on the flood travel time, release rate and duration from the upper dam.

  • PDF

수리학적 홍수추적에 의한 댐 방류시 하류수위 및 주요 하도구간별 홍수도달 시간의 예측 (Forecasting of Peak Flood Stage at Downstream Location and the Flood Travel Time by Hydraulic Flood Routing)

  • 윤용남;박무종
    • 물과 미래
    • /
    • 제25권3호
    • /
    • pp.115-124
    • /
    • 1992
  • 상류댐에서의 홍수량에 의한 하류지점에서의 첨두 홍수량과 홍수 도달 시간은 수리학적 홍수추적방법에 의해 계산될 수 있다. 본 연구는 한강 유역의 전구간을 대상으로 시행되었다. 계산된 춤두 홍수량과 댐사이의 홍수도달시간은 상류에서의 방류계속시간과 바류량의 크기에 관련되어 있고 각 댐구간 사이에서 이 관계를 이용하여 다중회기모형을 제안하였다. 댐하류에서의 첨두홍수량은 수위-유량 관계식에 의해서 첨두홍수위로 변환될 수 있다. 그러므로, 제안된 다중회기모형은 상류댐에서의 홍수 방류량과 방류 계속시간에 의한 하류지점에서의 첨두홍수위와 댐구간 사이의 홍수도달시간을 예측하는데 이용될 수 있을 것이다.

  • PDF

LiNiO$_2$/Li cell의 전기화학적 특성 (Electrochemical Properties of LiNiO$_2$/Li cell)

  • 전대규;김철중;성창호;구할본
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 1997년도 추계학술대회 논문집
    • /
    • pp.279-282
    • /
    • 1997
  • The propose of this study is research and improvement of LiNiO$_2$as cathode material for Lithium secondary batteries. LiNiO$_2$is prepared by heating LiOH . $H_2O$ and Ni(OH)$_2$(mole ratio 1 : 1) on various heat condition. In the result of XRD mesurement, all LiNiO$_2$prepared at this study showed hexagonal structure. In Cyclic Voltammetry, LiNiO$_2$is not conspicous about oxidation peak but oxidation curve change steeply over 3.8V and reduction peak discover at 3.6V. In discharge capacities, specific capacity is higher $O_2$than air when preliminary heated and 75$0^{\circ}C$ than $700^{\circ}C$, 80$0^{\circ}C$ when heated. Therefore, when preliminary heat at $650^{\circ}C$ $O_2$and heat at 75$0^{\circ}C$ carried out, discharge property is the best.

  • PDF

임상이 다른 3개 산림소유역의 장기 증발산량과 유출량의 변화 (Variations of Annual Evapotranspiration nnd Discharge in Three Different Forest-Type Catchments, Gyeonggido, South Korea)

  • 김경하;정용호
    • 한국농림기상학회지
    • /
    • 제8권3호
    • /
    • pp.174-182
    • /
    • 2006
  • 이 연구는 임분구조가 다른 3가지 임상에서 장기 증발산량과 유출량의 변화를 분석하여 증발산량, 첨두유출량 및 유출량에 미치는 장기 임상변화의 효과를 밝히기 위하여 수행하였다. 시험지는 경기도 광릉에 소재한 국립산림과학원 유역수문시험지로서 인공침엽수 유령림과 천연활엽수 장령림 그리고 경기도 양주에 소재한 혼효 사방복구림을 대상으로 하였다. 수문자료는 1982년부터 1999년까지 양수댐에서 측정한 유출량과 강수량을 분석하여 각 시험지별로 약 110개의 홍수수 문곡선을 선별한 후 첨두유출량과 그 시점까지의 강수량 합계를 분석하였다. 강수량과 유출량의 관계로부터 증발산량을 추정한 결과, 증발산량은 인공침엽수 유령림에서 679mm, 천연활엽수 장령림에서 580mm이었으며 혼효 사방복구림에서는 368mm이었다. 또한, 유역의 유출량조절효과를 보여주는 유출량-지속기간 곡선에 대한 분석 결과, 임상이 가장 불량한 혼효 사방복구림에서 곡선의 기울기가 가장 급한 것으로 나타났으나, 산림이 생장함에 따라 그 기울기가 감소하는 것으로 분석되었다. 강수량과 첨두유출량의 관계를 분석한 결과, 인공침엽수 유령림과 혼효 사방복구림의 경우 각각 강수량 100mm 및 50mm에서 첨두유출량의 증가율이 높아지는 역치값을 보이는 반면에 천연활엽수 장령림은 200mm로 나타났다. 장기간에 걸친 홍수수 문곡선의 비교 결과, 인공침엽수 유령림에서는 10년이 경과한 후 첨두유출량이 감소한 것으로 나타나, 산림이 생장함에 따라 홍수유출조절 효과가 커지는 것으로 분석되었다.

미계측 지점에서의 유출 모의 및 예측 (Runoff Simulation and Forecasting at Ungaged Station)

  • 안상진;최병만;연인성;곽현구
    • 한국수자원학회논문집
    • /
    • 제38권6호
    • /
    • pp.485-494
    • /
    • 2005
  • 유량과 수질의 관계를 분석하는 것은 매우 중요하다. 하천의 실시간적 관리를 위해서는 유량과 수질의 측정이 동일한 지점에서 동시간적으로 이루어져야 보다 효과적이다. 그러나 수질자동측정망 지점과 T/M 수위관측소가 원거리에 위치한 경우들이 있으며, 평창강 수질자동측정망 지점이 그 중 하나이다. 이러한 지점에서는 보다 정확한 유량 산정과 이를 활용한 예측 프로그램이나 시스템이 요구된다. 이번 연구에서는 미계측 지점인 평창강 수질자동측정망 지점에 유량예측 신경망 모형을 적용하고, 적용성을 검토하기 위해 WMS 모형의 모의결과와 비교하였다. WMS 모형은 첨두유량이 작고, 수문곡선이 단조로운 사상에 적합한 것으로 나타났다. 신경망 모형의 유출량 예측값은 비유량과 WMS 모형의 모의값에 근사하였으며, 미계측 지점에서의 유출량 변화성향을 잘 반영하는 것으로 나타났다.

한국에 있어서 제수문구조물의 설계의 기준을 주기 위한 수문학적 연구(류거, 홍수 편) (The furulamelllal study in order to obtain the hydrological design basis for hydrological structures in Korea (Run ofl estimate and Flood part))

  • 박성우
    • 한국농공학회지
    • /
    • 제8권1호
    • /
    • pp.1011-1034
    • /
    • 1966
  • This thesis is the final report which has long been studied by the author to obtain the design basis for various hydrological constructions with the specific system suitable to the natural environmental conditions in Korea. This report is divided into two parts: one is to estimate runoff volume from watersheds and the other to estimate the peak discharge for a single storm. According to the result of observed runoff record from watersheds, it is known that Kajiyama formula is useful instrument in estimating runoff volume from watersheds in this country. But it has been found that this formula shows us 20-30% less than the actual flow. Therefore, when wihed to bring a better result, the watershed characteristics coefficient in this formula, that is, f-value, should be corrected to 0.5-0.8. As for the method to estimate peak discharge from drainage basin, the author proposes to classify it in two ways; one is small size watershed and the other large size watershed. The maximum -flood discharge rate $Q_p$ and time to peak Pt obtained from the observed record on the small size watershed are compared by various methods and formulas which are based upon the modern hydrological knowledge. But it was fou.d that it. was not a satisfied result. Therefore, the author proposes. tocomputate $Q_p$, to present 4.0-5.0% for the total runoff volume ${\Sigma}Q$.${\Sigma}Q$ is computed under the assumption of 30mm 103s in watershed per day and to change the theoritical total flow volume to one hour dura tion total flow rate when design daily storm is given. Time to peak Pt is derived from three parameters which are u,w,k. These are computed by relationship between total runoff volume (ha-m unit)and $Q_p$. (C.M.S. unit). Finally, the author checked out these results obtained from 51 hydrographs and got a satisfied result. Therefore the author suggested the model of design dimensionless unit-hydrograph. And the author believes that this model will be much available at none runoff record river site. In the large size watersheds in Korea when the maximum discharge occurs, the effective rainfall is two consequtive stormy days. So the loss in watershed was assutned as 6Omm/2days,and the author proposed 3-hour-daration hydrograph flow distribution percentage. This distribution percentage will be sure to form the hydrograph coordinate.

  • PDF

Thrust Characteristics of a Laser-Assisted Pulsed Plasma Thruster

  • Masatoshi Kawakami;Hideyuki Horisawa;Kim, Itsuro ura
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2004년도 제22회 춘계학술대회논문집
    • /
    • pp.294-299
    • /
    • 2004
  • An assessment of a novel laser-electric hybrid propulsion system was conducted, in which a laser-induced plasma was induced through laser beam irradiation onto a solid target and accelerated by electrical means instead of direct acceleration only by using a laser beam. A fundamental study of newly developed rectangular laser-assisted pulsed-plasma thruster (PPT) was conducted. On discharge characteristics and thrust performances with increased peak current compared to our previous study to increase effects of electromagnetic forces on plasma acceleration. Maximum peak current increased for our early study by increasing electromagnetic effects in a laser assisted PPT. At 8.65 J discharge energy, the maximum current reached about 8000 A. Plasma behaviors emitted from a thruster in various cases were observed with an ICCD camera. It was shown that the plasma behaviors were almost identical between low and high voltage cases in initial several hundred nanoseconds, however, plasma emission with longer duration was observed in higher voltage cases. Canted current sheet structures were also observed in the higher voltage cases using a larger capacitor. With a newly developed torsion-balance type thrust stand, thrust performances of laser assisted PPT could be estimated. The impulse bit and specific impulse linearly increased. On the other hand, coupling coefficient and the thrust efficiency did not increase linearly. The coupling coefficient decreased with energy showing maximum value (20.8 ?Nsec/J) at 0 J, or in a pure laser ablation cases. Thrust efficiency first decreased with energy from 0 to 1.4 J and then increased linearly with energy from 1.4 J to 8.6 J. At 8.65 J operation, impulse bit of 38.1 ?Nsec, specific impulse of 3791 sec, thrust efficiency of 8 %, and coupling coefficient of 4.3 ?Nsec/J were obtained.

  • PDF

방사선에 조사된 EPR 의 전기적 특성에 관한 연구 (A Study on Electrical properties of EPR by Irradiated by X-rays)

  • 이성일;김귀열;이호식;이희갑
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2002년도 추계학술대회 논문집 Vol.15
    • /
    • pp.565-568
    • /
    • 2002
  • The value of charge current, discharge current, $\varepsilon_r$' $\varepsilon_r"$, residual voltage was measured inorder to investigate electric properties in Ethylene Prophylene Rubber for is irradiated $CO^{60}\gamma$ ray 0-38.1 Mrad. The value of charge current and the discharging current of the EPR is influenced by $CO^{60}-{\gamma}$-irradiation dose The charging current and the discharging current of EPR increase, depending on the ratio of degradation. As the irradiation dose is increased, the peak of residual voltage moves to the slorter time. The properties specific electric constant due to time variation was appeared dispersion by plentiful $CO^{60}-{\gamma}$-irradiation dose. The increase of peak in $\varepsilon_r"$ is attrib uted to the irratiation dose almost proportionally.

  • PDF

EPR의 전기특성에 미치는 방사선의 영향 (Effect of the Co$^{60}$ -Rays due to Electric properties of EPR-)

  • 이성일
    • 대한안전경영과학회:학술대회논문집
    • /
    • 대한안전경영과학회 2002년도 추계학술대회
    • /
    • pp.253-259
    • /
    • 2002
  • The value of charge currnet, discharge current, ${\varepsilon}r^'$,${\varepsilon}r^{'}$ residual voltage was measured inorder to investigate electric properties in Ethylene Prophylene Rubber for is irradiated C0$^{60}$$\gamma$ ray 0~38.1 Mrad. The value of charge current and the discharging current of the EPR is influenced by C0$^{60}$-$\gamma$- irradiation dose. The charging current and the discharging current of EPR increas, depending on the ratio of degradation. As the irradiatin dose is increased, the peak of residual voltage moves to the slorter time. The properties specific electric constant due to time variation was appeared dispersion by plentiful C0$^{60}$$\gamma$- irradiation dose. The increase of peak in ${\varepsilon}r^{'}$ is attrib uted to the irratiation dose almost proportionally.

  • PDF

유역특성에 의한 합성단위도의 유도에 관한 연구 (Derivation of the Synthetic Unit Hydrograph Based on the Watershed Characteristics)

  • 서승덕
    • 한국농공학회지
    • /
    • 제17권1호
    • /
    • pp.3642-3654
    • /
    • 1975
  • The purpose of this thesis is to derive a unit hydrograph which may be applied to the ungaged watershed area from the relations between directly measurable unitgraph properties such as peak discharge(qp), time to peak discharge (Tp), and lag time (Lg) and watershed characteristics such as river length(L) from the given station to the upstream limits of the watershed area in km, river length from station to centroid of gravity of the watershed area in km (Lca), and main stream slope in meter per km (S). Other procedure based on routing a time-area diagram through catchment storage named Instantaneous Unit Hydrograph(IUH). Dimensionless unitgraph also analysed in brief. The basic data (1969 to 1973) used in these studies are 9 recording level gages and rating curves, 41 rain gages and pluviographs, and 40 observed unitgraphs through the 9 sub watersheds in Nak Oong River basin. The results summarized in these studies are as follows; 1. Time in hour from start of rise to peak rate (Tp) generally occured at the position of 0.3Tb (time base of hydrograph) with some indication of higher values for larger watershed. The base flow is comparelatively higher than the other small watershed area. 2. Te losses from rainfall were divided into initial loss and continuing loss. Initial loss may be defined as that portion of storm rainfall which is intercepted by vegetation, held in deppression storage or infiltrated at a high rate early in the storm and continuing loss is defined as the loss which continues at a constant rate throughout the duration of the storm after the initial loss has been satisfied. Tis continuing loss approximates the nearly constant rate of infiltration (${\Phi}$-index method). The loss rate from this analysis was estimated 50 Per cent to the rainfall excess approximately during the surface runoff occured. 3. Stream slope seems approximate, as is usual, to consider the mainstreamonly, not giving any specific consideration to tributary. It is desirable to develop a single measure of slope that is representative of the who1e stream. The mean slope of channel increment in 1 meter per 200 meters and 1 meter per 1400 meters were defined at Gazang and Jindong respectively. It is considered that the slopes are low slightly in the light of other river studies. Flood concentration rate might slightly be low in the Nak Dong river basin. 4. It found that the watershed lag (Lg, hrs) could be expressed by Lg=0.253 (L.Lca)0.4171 The product L.Lca is a measure of the size and shape of the watershed. For the logarithms, the correlation coefficient for Lg was 0.97 which defined that Lg is closely related with the watershed characteristics, L and Lca. 5. Expression for basin might be expected to take form containing theslope as {{{{ { L}_{g }=0.545 {( { L. { L}_{ca } } over { SQRT {s} } ) }^{0.346 } }}}} For the logarithms, the correlation coefficient for Lg was 0.97 which defined that Lg is closely related with the basin characteristics too. It should be needed to take care of analysis which relating to the mean slopes 6. Peak discharge per unit area of unitgraph for standard duration tr, ㎥/sec/$\textrm{km}^2$, was given by qp=10-0.52-0.0184Lg with a indication of lower values for watershed contrary to the higher lag time. For the logarithms, the correlation coefficient qp was 0.998 which defined high sign ificance. The peak discharge of the unitgraph for an area could therefore be expected to take the from Qp=qp. A(㎥/sec). 7. Using the unitgraph parameter Lg, the base length of the unitgraph, in days, was adopted as {{{{ {T}_{b } =0.73+2.073( { { L}_{g } } over {24 } )}}}} with high significant correlation coefficient, 0.92. The constant of the above equation are fixed by the procedure used to separate base flow from direct runoff. 8. The width W75 of the unitgraph at discharge equal to 75 per cent of the peak discharge, in hours and the width W50 at discharge equal to 50 Per cent of the peak discharge in hours, can be estimated from {{{{ { W}_{75 }= { 1.61} over { { q}_{b } ^{1.05 } } }}}} and {{{{ { W}_{50 }= { 2.5} over { { q}_{b } ^{1.05 } } }}}} respectively. This provides supplementary guide for sketching the unitgraph. 9. Above equations define the three factors necessary to construct the unitgraph for duration tr. For the duration tR, the lag is LgR=Lg+0.2(tR-tr) and this modified lag, LgRis used in qp and Tb It the tr happens to be equal to or close to tR, further assume qpR=qp. 10. Triangular hydrograph is a dimensionless unitgraph prepared from the 40 unitgraphs. The equation is shown as {{{{ { q}_{p } = { K.A.Q} over { { T}_{p } } }}}} or {{{{ { q}_{p } = { 0.21A.Q} over { { T}_{p } } }}}} The constant 0.21 is defined to Nak Dong River basin. 11. The base length of the time-area diagram for the IUH routing is {{{{C=0.9 {( { L. { L}_{ca } } over { SQRT { s} } ) }^{1/3 } }}}}. Correlation coefficient for C was 0.983 which defined a high significance. The base length of the T-AD was set to equal the time from the midpoint of rain fall excess to the point of contraflexure. The constant K, derived in this studies is K=8.32+0.0213 {{{{ { L} over { SQRT { s} } }}}} with correlation coefficient, 0.964. 12. In the light of the results analysed in these studies, average errors in the peak discharge of the Synthetic unitgraph, Triangular unitgraph, and IUH were estimated as 2.2, 7.7 and 6.4 per cent respectively to the peak of observed average unitgraph. Each ordinate of the Synthetic unitgraph was approached closely to the observed one.

  • PDF