• 제목/요약/키워드: Specific flow conditions

Search Result 315, Processing Time 0.012 seconds

Three phase flow simulations using the fractional flow based approach with general initial and boundary conditions

  • Suk, Heejun
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2004.04a
    • /
    • pp.88-91
    • /
    • 2004
  • The multiphase flow simulator, MPS, is developed based on the fractional flow approach considering tile fully three phase flow with general initial and boundary condition. Most existing fractional flow-based models are limited to two-phase flow and specific boundary conditions. Although there appears a number of three-phase flow models, they were mostly developed using pressure based approaches. As a result, these models require cumbersome variable-switch techniques to deal with phase appearance and disappearance. The use of fractional flow based approach in MPS makes it unnecessary to use variable-switch to handle the change of phase configurations. Also most existing fractional flow based models consider only specific boundary conditions. However, the present model considers general boundary conditions of most possible and plausible cases which consists of ten cases.

  • PDF

A Study on the Suggestions for Standard Flow Conditions considering the Variation of Stream Flow and Water Quality for the Management of Total Maximum Daily Loads (하천 유량.수질변화 특성을 고려한 수질오염총량관리 기준유량 조건에 관한 연구)

  • Park, Jun Dae;Oh, Seung Young;Choi, Yun Ho
    • Journal of Korean Society on Water Environment
    • /
    • v.28 no.3
    • /
    • pp.426-435
    • /
    • 2012
  • The variation of stream flow is the one of the most important factors which influence on that of water quality in the unit watershed. The target water quality goal is established and permissible load is allotted in the base of the standard flow condition along with its water quality for the management of Total Maximum Daily Loads (TMDLs). A standard flow selected could cause problems in the load allotment if it was not properly arranged. This study reviewed the acquisition of water quality data, the self-variation and the retainability in water quality on the specific flow conditions. This study also proposed the median and the adjusted average flow condition out of general flow conditions as alternative standard flow conditions. It is considered that the alternatives can make the water quality data easily acquired and the water quality representativeness more enhanced on the standard flow conditions.

The Effects of Compressor Design Conditions on the Off-Design Performance of a Gas Turbine Engine (압축기 설계조건이 가스터빈 엔진의 탈설계점 성능에 미치는 영향)

  • 강동진;정평석;안상규
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.9
    • /
    • pp.2413-2422
    • /
    • 1994
  • The effects of compressor design conditions on the off-design performance of a single-shaft gas turbine engine have been studied. Three different geometric design conditions are considered and three different values for the specific mass flow rate at the inlet to the compressor are assumed. For each of nine compressor design, the off-design performance of the gas turbine engine is predicted using the method previously proposed by present authors. Results show that the predicted off-design performances are quite different from each other even though they have the same performance at design point: it means that compressor design conditions should be determined in consideration of the off-design performance of the engine. The specific mass flow rate at the inlet to the compressor is also shown that it might be optimized with respect to the net power of the engine.

Density Measurement Comparisons of Specific Gravity Meter and Gas Chromatography in the Field (실제조건에서 기준 밀도계와 가스 분석기에 의한 밀도 측정 결과 비교)

  • Lee, Kang-Jin;Her, Jae-Young;Ha, Young-Cheol
    • 유체기계공업학회:학술대회논문집
    • /
    • 1999.12a
    • /
    • pp.90-96
    • /
    • 1999
  • In contracts for sales of natural gas between sellers and buyers, it is not suncient to only measure a volumetric quantity of gas in flowing conditions in metering station. Therefore the measured volumetric quantity must be converted to that of reference conditions. The density of the natural gas required in such a calculation can be measured directly or estimated from the equation of sate or any other experimental methods. The specific gravity meter is the apparatus used to measure the density of fluids under the reference conditions and it can be widely used in industrial areas, especially in massive flow rate natural gas industry. This study has been carried out in an attempt to improve measurement accuracy of natural gas flow rate calculation, providing the adequate installation and proper operation conditions of specific gravity meter. The test results are 1) the density measurement errors in case of using methane and standard gas as calibration gases are smaller than using methane and nitrogen gas, 2) the periodical calibration to maintain accurate density measurements is essential, and 3) the specific gravity meter is sensitive to changes of environmental conditions, especially environmental temperature surrounding the specific gravity meter.

  • PDF

A Design Procedure for a Multi-Stage Axial Compressor Using the Stage-Stacking Method (단축적방법을 이용한 다단 축류압축기의 설계)

  • 강동진
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.6
    • /
    • pp.1598-1603
    • /
    • 1994
  • A preliminary design procedure for a multi-stage axial compressor is developed, which is based on the stage-stacking method. It determines the flow coefficient which gives rise to the design conditions required such as pressure ratio, mass flow rate and rotational speed for a given specific mass flow rate at inlet to a compressor. With this flow coefficient, blade radii, every stage and compressor performance characterics such as stage pressure ratio, adiabatic efficiency etc. are calculated by stacking each stage performance characteristics. It is shown that there is an optimum number of stage which results in the maximum of compressor overall efficiency for a given specific mass flow rate at inlet to a compressor. A test design was tried for three different geometric design constraints, and comparison with a previous study shows that present procedure could be used reliably in determining the number of compressor stage in preliminary design stage.

Hydrodynamic Design of Thrust Ring Pump for Large Hydro Turbine Generator Units

  • Lai, Xide;Zhang, Xiang;Chen, Xiaoming;Yang, Shifu
    • International Journal of Fluid Machinery and Systems
    • /
    • v.8 no.1
    • /
    • pp.46-54
    • /
    • 2015
  • Thrust-ring-pump is a kind of extreme-low specific speed centrifugal pump with special structure as numerous restrictions from thrust bearing and operation conditions of hydro-generator units. Because the oil circulatory and cooling system with thrust-ring-pump has a lot of advantages in maintenance and compactness in structure, it has widely been used in large and medium-sized hydro-generator units. Since the diameter and the speed of the thrust ring is limited by the generator set, the matching relationship between the flow passage inside the thrust ring (equivalent to impeller) and oil bath (equivalent to volute) has great influence on hydrodynamic performance of thrust-ring-pump. On another hand, the head and flow rate are varying with the operation conditions of hydro-generator units and the oil circulatory and cooling system. As so far, the empirical calculation method is employed during the actual engineering design, in order to guarantee the operating performance of the oil circulatory and cooling system with thrust-ring-pump at different conditions, a collaborative hydrodynamic design and optimization is purposed in this paper. Firstly, the head and flow rate at different conditions are decided by 1D flow numerical simulation of the oil circulatory and cooling system. Secondly, the flow passages of thrust-ring-pump are empirically designed under the restrictions of diameter and the speed of the thrust ring according to the head and flow rate from the simulation. Thirdly, the flow passage geometry matching optimization between thrust ring and oil bath is implemented by means of 3D flow simulation and performance prediction. Then, the pumps and the oil circulatory and cooling system are collaborative hydrodynamic optimized with predicted head-flow rate curve and the efficiency-flow rate curve of thrust-ring-pump. The presented methodology has been adopted by DFEM in design process of thrust-ring-pump and it shown can effectively improve the performance of whole system.

LDV Measurement, Flow Visualization and Numerical Analysis of Flow Distribution in a Close-Coupled Catalytic Converter

  • Kim, Duk-Sang;Cho, Yong-Seok
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.11
    • /
    • pp.2032-2041
    • /
    • 2004
  • Results from an experimental study of flow distribution in a close-coupled catalytic converter(CCC) are presented. The experiments were carried out with a flow measurement system specially designed for this study under steady and transient flow conditions. A pitot tube was a tool for measuring flow distribution at the exit of the first monolith. The flow distribution of the CCC was also measured by LDV system and flow visualization. Results from numerical analysis are also presented. Experimental results showed that the flow uniformity index decreases as flow Reynolds number increases. In steady flow conditions, the flow through each exhaust pipe made some flow concentrations on a specific region of the CCC inlet. The transient test results showed that the flow through each exhaust pipe in the engine firing order, interacted with each other to ensure that the flow distribution was uniform. The results of numerical analysis were qualitatively accepted with experimental results. They supported and helped explain the flow in the entry region of CCC.

Performance Analysis of SITVC System with Various Secondary Injection Conditions (이차분사노즐 작동 조건 변화에 따른 SITVC 성능해석)

  • Bae, Ji-Yeul;Song, Ji-Woon;Kim, Tae-Hwan;Cho, Hyung-Hee;Bae, Ju-Chan
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.116-121
    • /
    • 2011
  • Performance of Secondary Injection Thrust Vector Control system is investigated under various secondary injection operating conditions. 3-dimensional converging-diverging nozzle having 8 secondary injection nozzles is used in this numerical study. Total pressure of flow inside the nozzle is about 70bars, and total temperature set to 300K for cold flow simulation. Effect of secondary injection flow rate and injection nozzle configuration is considered in this research. Simulation is conducted with commercial CFD code Ansys Fluent v13. Spalart-Allmaras(1-equation)model is used for turbulence modeling with AUSM+ scheme. Various performance factors as Axial thrust, side force, system specific impulse ratio are considered and explained for system performance evaluation.

  • PDF

Two-Phase Flow through a T-Junction

  • Tae Sang-Jin;Cho Keum-Nam
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.14 no.1
    • /
    • pp.28-39
    • /
    • 2006
  • Two-phase flow through a T-junction has been studied by numerous researchers so far. The dividing characteristics of the gas and liquid phases at the T-junction are very complicated due to a lot of related variables. The prediction models have been suggested by using experimental data for a specific condition or working fluid. But, they showed the application limitation for the most of the other conditions or fluids. Since most of them are applicable for their own experimental range, the generalized model for the wide range of conditions and fluids is needed. Even though it's not available now, some of the models developed for air-water flow at a T-junction might be applicable for the part of refrigerants with some modifications. Especially, for the two-phase flow of refrigerants at the T-junction, very few studies have been performed. Further experimental study is required to be performed for the wide range of test conditions and fluids to predict properly the two-phase flow distribution and phase separation through the T-junction.

A NUMERICAL ANALYSIS ON BLOOD FLOOD FLOW INSIDE A CAROTID ARTERY WITH THE PATIENT SPECIFIC ARTERIAL GEOMETRY AND BLOOD RHEOLOGY DATA (실제 혈관 형상 및 혈액 특성을 고려한 경동맥 내 혈액 유동에 대한 수치해석 연구)

  • Lee, Sang-Hyuk;Jeong, Seul-Ki;Hur, Nahm-Keon;Cho, Young-Il
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2010.05a
    • /
    • pp.224-227
    • /
    • 2010
  • In the present study, the characteristics of blood flow inside a carotid artery numerically investigated with shear rate specific blood viscosity. To simulate the blood flow with a patient-specific arterial geometry, the geometry of a carotid artery was constructed from 2D rain MRA data. The measured data of blood flow velocity at the common carotid artery were used as boundary conditions of the simulation. For the blood rheology data to be used in the simulation, the patient specific blood viscosity over the whole ranges of shear rate was obtained using $BioVisco^{TM}$. From the numerical results of the blood flow in the carotid artery, the increase of blood viscosity and the decrease of wall shear stress could be found in the carotid bifurcated region, more specifically at the post-plaque dilated region. These characteristics of blood viscosity and wall shear stress can be used more precisely and efficiently to predict the region vulnerable to plaque growht or thrombosis on top of the plaque.

  • PDF