• Title/Summary/Keyword: Specific conductivity

Search Result 521, Processing Time 0.039 seconds

Effectiveness of Electromagnetic Interference Shielding of Carbon Nanofiber/Poly(vinylidene fluoride) Composites as a Function of Beat Treatment Temperature and Time (열처리 온도와 시간에 따른 나노탄소섬유/PVDF 복합재의 전자파 차폐 특성)

  • 김명수;이방원;우원준;안광희
    • Polymer(Korea)
    • /
    • v.25 no.3
    • /
    • pp.367-374
    • /
    • 2001
  • The electromagnetic interference (EMI) shielding effectiveness (SE) of poly(vinylidene fluoride) (PVDF) composites was investigated using carbon nanofiber fillers prepared by catalytic chemical vapor deposition of various carbon-containing gases over Ni and Ni-Cu catalysts. The electrical conductivity of carbon nanofiber which was regarded as the key property of filler for the application of EMI shielding ranged from 4.2 to 22.4 S/cm at a pressure of 10000 psi. The electrical conductivity of carbon nanofiber/PVDF composites ranged from 0.22 to 2.46 S/cm and the EMI SE of those was in the range of 2∼13 dB. The electrical conductivity of carbon nanofibers increased with the increase in heat treatment temperature and time, while the electrical conductivity of the composites increased rapidly at the initial heat treatment and then approached a certain value with the further increase of heat treatment. The SE of the composites showed a maximum at the medium heat treatment and was proportional to the electrical conductivity of the composites. It was concluded that the specific surface area of carbon nanofibers decreased with the continual heat treatment and the specific surface area of filler was an important factor for the SE of the composites.

  • PDF

Investigation of ground thermal characteristics for performance analysis of borehole heat exchanger (지중 열교환기 성능 분석을 위한 지반 열물성 조사)

  • Shim, Byoung-Ohan;Song, Yoon-Ho;Kim, Hyoung-Chan;Cho, Byong-Wook;Park, Deok-Won;Im, Do-Hyung;Lee, Young-Min
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.11a
    • /
    • pp.587-590
    • /
    • 2005
  • A detailed geothermal characteristics survey with numerical simulations of the heat transfer in a site for ground source heat pump system is necessary for deploying a shallow geothermal utilization system. Density, specific heat, thermal diffusivity, and thermal conductivity are measured on 91 core samples from a 300 m deep borehole in KIGAM(Korea Institute of Geoscience and Mineral Resources). The heat flow is estimated from the thermal gradient and average thermal conductivity and the correlation between fracture system and hydraulic conductivity is analyzed. From the obtained ground information of the study site the performance of the ground heat pump system can be analyzed with some detailed numerical simulations for seasonal heat pump operation skill and optimal system design techniques.

  • PDF

Ion Transport and High Frequency Dielectric of the Hollandite $Nax(Ti_8-_xCr_x)O_{16}$ (Hollandite $Nax(Ti_8-_xCr_x)O_{16}$의 이온 전송과 고유전율)

  • Shin, Hyun-Mahn;Lee, Kyung-Sup
    • Proceedings of the KIEE Conference
    • /
    • 2008.09a
    • /
    • pp.243-244
    • /
    • 2008
  • The Velocity Autocorrelation Function (VAF) of the sodium ions is calculated for a range of temperature from 250K to 1000K and converted into the linear ac-conductivity and ac-susceptibility response via Fourier transformation. A peak is found in the conductivity around $6{\times}10^{12}Hz$ that has some of the character of a Poley absorption. Here it is shown to be due to an harmonically coupled site vibrations of the sodium atoms, which extend only over a limited range. At frequencies below the peak the conductivity tends towards a constant i.e. dc value corresponding to a constant flow of ions through the simulation cell. At high temperatures the conductivity due to this ion transport process behaves like a metal with an insulator to metal transition occurring around a specific temperature.

  • PDF

A parametric study on the performance of heat pump using standing column well(SCW) (스탠딩컬럼웰(SCW)을 적용한 지열히트펌프의 성능에 대한 매개변수 연구)

  • Chang, Jae-Hoon;Park, Du-Hee
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.625-630
    • /
    • 2010
  • Parametric study was performed using the SCW numerical model for evaluating the performance of the SCW. The five ground related parameters, which are porosity, hydraulic conductivity, thermal conductivity, specific heat, geothermal gradient, and five SCW design parameters, which are pumping rate, well depth well diameter, dip tube diameter, bleeding rate, were used in the study. Numerical simulations were performed for short-term (24-hour) simulation. The study results indicate that the parameters that have important influence on the performance of SCW were hydraulic conductivity, thermal conductivity, geothermal gradient, pumping rate, and bleeding rate. Overall, this study showed that various factors had a cumulative influence on the performance of the SCW, and a numerical simulation can be used to accurately predict the performance of the SCW.

  • PDF

Fabrication and thermal conductivity of CeO2-Ce3Si2 composite

  • Ahn, Jungsu;Kim, Gyeonghun;Jung, Yunsong;Ahn, Sangjoon
    • Nuclear Engineering and Technology
    • /
    • v.53 no.2
    • /
    • pp.583-591
    • /
    • 2021
  • Various compositions of CeO2-Ce3Si2 (0, 10, 30, 50, and 100 wt%Ce3Si2) composites were fabricated using conventional sintering and spark plasma sintering. Lower relative density, enhanced interdiffusion of oxygen and silicon, and silicide agglomerations from the congruent melting of Ce3Si2 at 1390 ℃ were only observed from conventionally-sintered pellets. Thermal conductivity of spark plasma sintered CeO2-Ce3Si2 composites was calculated from the measured thermal diffusivity, specific heat, and density, which exhibited dense (>90 %TD) and homogeneous microstructure. The composite with 50 wt%Ce3Si2 exhibited 55% higher thermal conductivity than CeO2 at 500 ℃, and 81% higher at 1000 ℃.

Study on the Heat Transfer Characteristics of Warm Needle Materials in Korean Medicine (온침소재의 열전달특성에 관한 연구)

  • Yeo, Sujung;Chung, Jee Hyun;Kim, Young-Kon;Koo, Sungtae;Lee, Min Kyu;Lim, Sabina
    • Korean Journal of Acupuncture
    • /
    • v.31 no.3
    • /
    • pp.125-135
    • /
    • 2014
  • Objectives : Warm needling is the method combining the effects of acupuncture and moxibustion. In modern clinics, warm needling is only affected by treatment time or frequency. We need to study the physical characteristics of warm needles currently used in clinics in order to develop more efficient and economical treatments. Methods : We collected various warm needle specimens and analyzed chemical constitutions, measured heat transfer velocity, micro Vicker's hardness and specific resistance. We studied the relationship between heat transfer velocity and micro Vicker's hardness as well as that between heat transfer velocity and specific resistance. Results : The heat transfer velocity of the Silver_HL was 3.3 mm/sec, of the Au alloy group was 1.3~2.6 mm/sec, and Silver_IN, Silver_ZK and SS groups was less than 0.3 mm/sec. We therefore concluded that the needle composed of Ag has the best heat transfer velocity. In the Micro Vicker's hardness test, Vicker's hardness of the Au alloy group was 159~170 Hv, of Silver_HL was 181 Hv, and of the Silver_IN, Silver_ZK, SS group was 450.8~519 Hv. In the Silver_IN, Silver_ZK and SS groups, hardness was inversely proportial to thermal conductivity. In the specific resistance test, the specific resistance of Silver_HL was the lowest, that of the Au alloy group was the second lowest, and that of the Silver_IN, Silver_ZK, SS groups were the highest. Conclusions : We concluded that the needle composed of Ag has the best heat transfer velocity, highest electric conductivity and thermal conductivity, therefore the needle composed of Ag is suitable for warm needling.

An Experimental Study on the Effect of Ground Heat Exchanger to the Overall Thermal Conductivity (지중열교환기 설치 조건이 지중 유효 열전도도에 미치는 영향에 관한 실험적 연구)

  • Kong, Hyoung-Jin;Lim, Hyo-Jae;Choi, Jae-Ho;Sohn, Byong-Hu
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.45-51
    • /
    • 2009
  • A ground-loop heat exchanger in a ground source heat pump system is an important unit that determines the thermal performance of a system and its initial cost. The size and performance of this heat exchanger is highly dependent on ground thermal properties. A proper design requires certain site-specific parameters, most importantly the ground effective thermal conductivity, the borehole thermal resistance and the undisturbed ground temperature. This study was performed to investigate the effect of some parameters such as borehole lengths, various grouting materials and U-tube configurations on ground effective thermal conductivity. In this study, thermal response tests were conducted using a testing device with 9-different ground-loop heat exchangers. From the experimental results, the length of ground-loop heat exchanger affects to the effective thermal conductivity. Among the various grouting materials, the bentonite-based grout with silica sand shows the largest thermal conductivity value.

  • PDF

Development of Thermal Performance Tester for Non-Homogeneous Insulation Pannels Installed Vertically (수직으로 설치된 비균질 평판 단열재용 성능시험장치 개발)

  • Oh, Hong Young;Song, Ki O;Jeon, Hyun Ik;Cho, Sun Young
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.28 no.4
    • /
    • pp.153-157
    • /
    • 2016
  • In case of metal insulation, which is produced by stacking stainless steel sheets and air layers in a multi-stack manner at a specific thickness, insulation performance will be evaluated based on thermal transmittance rather than the intrinsic physical properties of each material such as thermal conductivity. However, there is no standard for measuring thermal transmittance targeted for non-homogeneous insulation which is used in relatively high temperature conditions such as a power station. In this study, the thermal conductivity of homogeneous insulation acquired by the standardized guard hot plate method and the thermal conductivity of homogeneous insulation measured by the newly developed performance tester were compared to verify the confidence level of the tester. As a result, thermal conductivity acquired by the newly developed thermal transmittance tester was about 6% higher than the thermal conductivity measured by the existing guard hot plate method under the anticipated service temperature conditions.

A Thermal Conductivity Model for LWR MOX Fuel and Its Verification Using In-pile Data

  • Byung-Ho Lee;Yang-Hyun Koo;Jin-Silk Cheon;Je-Yong Oh;Hyung-Koo Joo;Dong-Seong Sohn
    • Nuclear Engineering and Technology
    • /
    • v.34 no.5
    • /
    • pp.482-493
    • /
    • 2002
  • The MOX fuel for LWR is fabricated either by direct mechanical blending of UO$_2$ and PuO$_2$ or by two stage mixing. Hence Pu-rich particles, whose Pu concentrations are higher than pellet average one and whose size distribution depends on a specific fabrication method, are inevitably dispersed in MOX pellet. Due to the inhomogeneous microstructure of MOX fuel, the thermal conductivity of LWR MOX fuel scatters from 80 to 100 % of UO$_2$ fuel. This paper describes a mechanistic thermal conductivity model for MOX fuel by considering this inhomogeneous microstructure and presents an explanation for the wide scattering of measured MOX fuel's thermal conductivity. The developed model has been incorporated into a KAERI's fuel performance code, COSMOS, and then evaluated using the measured in-pile data for MOX fuel. The database used for verification consists of homogeneous MOX fuel at beginning-of-life and inhomogeneous MOX fuel at high turnup. The COSMOS code predicts the thermal behavior of MOX fuel well except for the irradiation test accompanying substantial fission gas release. The over-prediction with substantial fission gas release seems to suggest the need for the introduction of a recovery factor to a term that considers the burnup effect on thermal conductivity.

Correlating the hydraulic conductivities of GCLs with some properties of bentonites

  • Oren, A. Hakan;Aksoy, Yeliz Yukselen;Onal, Okan;Demirkiran, Havva
    • Geomechanics and Engineering
    • /
    • v.15 no.5
    • /
    • pp.1091-1100
    • /
    • 2018
  • In this study, the relationships between hydraulic conductivity of GCLs and physico-chemical properties of bentonites were assessed. In addition to four factory manufactured GCLs, six artificially prepared GCLs (AP-GCLs) were tested. AP-GCLs were prepared in the laboratory without bonding or stitching. A total of 20 hydraulic conductivity tests were conducted using flexible wall permeameters ten of which were permeated with distilled deionized water (DIW) and the rest were permeated with tap water (TW). The hydraulic conductivity of GCLs and AP-GCLs were between $5.2{\times}10^{-10}cm/s$ and $3.0{\times}10^{-9}cm/s$. The hydraulic conductivities of all GCLs to DIW were very similar to that of GCLs to TW. Then, simple regression analyses were conducted between hydraulic conductivity and physicochemical properties of bentonite. The best correlation coefficient was achieved when hydraulic conductivity was related with clay content (R=0.85). Liquid limit and plasticity index were other independent variables that have good correlation coefficients with hydraulic conductivity (R~0.80). The correlation coefficient with swell index is less than other parameters, but still fairly good (R~0.70). In contrast, hydraulic conductivity had poor correlation coefficients with specific surface area (SSA), smectite content and cation exchange capacity (CEC) (i.e., R < 0.5). Furthermore, some post-test properties of bentonite such as final height and final water content were correlated with the hydraulic conductivity as well. The hydraulic conductivity of GCLs had fairly good correlation coefficients with either final height or final water content. However, those of AP-GCLs had poor correlations with these variables on account of fiber free characteristics.