• Title/Summary/Keyword: Specific capacitance

Search Result 297, Processing Time 0.028 seconds

Fabrication of Graphene Supercapacitors for Flexible Energy Storage

  • Habashi, M. Namdar;Asl, Shahab Khameneh
    • Korean Journal of Materials Research
    • /
    • v.27 no.5
    • /
    • pp.248-254
    • /
    • 2017
  • In the present work, graphene powder was synthesized by laser scribing method. The resultant flexible light-scribed graphene is very appropriate for use in micro-supercapacitors. The effect of the laser scribing process in reducing graphene oxide (GO) was investigated. GO was synthesized using a chemical mixture of GO solution; then, it was coated onto a LightScribe DVD disk and laser scribed to reduce GO and create laser-scribed graphene (LSG). The CV curves of pristine rGO at various scan rates showed that the ultimate product possesses the ability to store energy at the supercapacitor level. Charge-discharge curves of pristine rGO at two different current densities indicated that the specific capacitance ($C_m$) increases due to the reduction of the discharge current density. Finally, the long-term charge-discharge stability of the LSG was plotted and indicates that the specific capacitance decreases very slightly from its primary capacitance of ${\sim}10F\;cm^{-3}$ and that the cyclic stability is favorable over 1000 cycles.

Study on High Density Activated Carbons for Electrode Materials of Supercapacitor (초고용량 커패시터 전극활성물질용 고밀도 활성탄 제조 및 특성 연구)

  • Roh, Kwang Chul;Park, Jin Bae;Lee, Chul-Tae;Park, Chul Wan
    • Applied Chemistry for Engineering
    • /
    • v.18 no.4
    • /
    • pp.381-385
    • /
    • 2007
  • High density activated carbons electrode materials, for supercapacitor were prepared by chemical KOH activation of cokes as the starting material under Ar atmosphere. By controlling the synthesis conditions and reducing KOH quantity in the activation step, the specific surface area of the product was decreased. BET surface area was measured to be $500{\sim}1260m^2/g$, and the electrode density was in the range of $0.68{\sim}0.83g/cm^3$. Volumetric specific capacitance (unit cell test) was as high as 20 F/cc, which corresponds to gravimetric specific capacitance of about 95 F/cc on the basis of half cell test. It should be noted that the specific capacitance of the activated carbons prepared in this study is superior to that of commercial activated carbons.

Electrochemical Characteristics of Aqueous Polymeric Gel Electrolyte for Supercapaictor (수퍼커패시터용 수용성 고분자 젤 전해질의 전기화학적 특성)

  • Kim, Han-Joo;Ishikawa, Masashi;Morita, Masayuki;Park, Soo-Gil
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11b
    • /
    • pp.93-96
    • /
    • 2001
  • We have reported to make nanostructured cobalt oxide electrode that have large capacitance over than 400F/g (specific capacitance) and good cycleability. But, It had serious demerits of low voltage range under 0.5V and low power density. Therefore, we need to increase voltage range of cobalt oxide electrode. we report here on the electrochemical properties of sol-gel-derived nanoparticulate cobalt xerogel in 1M KOH solution and aqueous polymeric gel electrolyte. In solution electrolyte, cobalt oxide electrode had over than 250F/g capacitance consisted of EDLC and pseudocapacitance. In gel electrolyte, cobalt oxide electrode had around l00F/g capacitance. This capacitance was only surface EDLC. In solution electrolyte, potassium ion as working ion reacted with both of layers easily. However, In gel electrolyte, reacted with only surface-active layer. Its very hard to reach resistive layer. So, we have studied on pretreatment of electrode to contain working ions easily. We'll report more details.

  • PDF

Electrochemical Characteristics of Aqueous Polymeric Gel Electrolyte for Supercapacitor (수퍼커패시터용 수용성 고분자 젤 전해질의 전기화학적 특성)

  • ;Masashi ISHIKAWA;Masayuki MORITA
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.93-96
    • /
    • 2001
  • We have reported to make nanostructured cobalt oxide electrode that have large capacitance over than 400F/g (specific capacitance) and good cycleability. But, It had serious demerits of low voltage range under 0.5V and low power density. Therefore, we need to increase voltage range of cobalt oxide electrode. we report here on the electrochemical properties of sol-gel-derived nanoparticulate cobalt xerogel in 1M KOH solution and aqueous polymeric gel electrolyte. In solution electrolyte, cobalt oxide electrode had over than 250F/g capacitance consisted of EDLC and pseudocapacitance. In gel electrolyte, cobalt oxide electrode had around 100F/g capacitance. This capacitance was only surface EDLC. In solution electrolyte, potassium ion as working ion reacted with both of layers easily. However, In gel electrolyte, reacted with only surface-active layer. Its very hard to reach resistive layer. So, e have studied on pretretmetn of electrode to contain working ions easily. We'll report more details.

  • PDF

Fabrication of nitrogen doped ordered mesoporous carbon derived from glucosamine with hybrid capacitive behaviors

  • Zhang, Deyi;Han, Mei;Li, Yubing;Wang, Bing;Wang, Yi;Wang, Kunjie;Feng, Huixia
    • Carbon letters
    • /
    • v.23
    • /
    • pp.9-16
    • /
    • 2017
  • This paper introduces a nitrogen-doped ordered mesoporous carbon (NOMC) derived from glucosamine with hybrid capacitive behaviors, achieved by successfully combining electrical double-layer capacitance with pseudo-capacitance behaviors. The nitrogen doping content of the fabricated NOMC reached 7.4 at% while its specific surface area ($S_{BET}$) and total pore volume reached $778m^2g^{-1}$ and $1.17cm^3g^{-1}$, respectively. A dual mesoporous structure with small mesopores centered at 3.6 nm and large mesopores centered at 9.9 nm was observed. The specific capacitance of the reported materials reached up to $328Fg^{-1}$, which was 2.1 times higher than that of pristine CMK-3. The capacitance retention rate was found to be higher than 87.9% after 1000 charge/discharge cycles. The supplementary pseudocapacitance as well as the enhanced wettability and conductivity due to the incorporation of nitrogen heteroatoms within the carbon matrixes were found to be responsible for the excellent capacitive performance of the reported NOMC materials.

Effect of Thermal Treatment Temperature on Electrochemical Behaviors of Ni/trimesic Acid-based Metal Organic Frameworks Electrodes for Supercapacitors (수퍼커패시터용 니켈/트리메식 산 기반 금속-유기구조체 전극의 전기화학적 거동에 열처리 온도가 미치는 효과)

  • Kim, Jeonghyun;Jung, Yongju;Kim, Seok
    • Applied Chemistry for Engineering
    • /
    • v.30 no.1
    • /
    • pp.11-16
    • /
    • 2019
  • Ni-benzene-1,3,5-tricarboxylic acid based metal organic frameworks were successfully synthesized by hydrothermal method and thermally treated at various temperature. The electrochemical performance of composites was investigated using cyclic voltammetry, galvanostatic charge-discharge, and electrochemical impedance spectroscopy. Among all prepared composites, the samples annealed at $250^{\circ}C$ showed the highest capacitance with a low resistance, and high cycle stability. It was possible to obtain the low electrical resistance and high electric conductivity of the electrode by improved microstructure and morphology after the thermal annealing at $250^{\circ}C$. The samples annealed at $250^{\circ}C$ also displayed the maximum specific capacitance with a value of $953Fg^{-1}$ at a current density of $0.66A/g^{-1}$ in 6 M KOH electrolyte. Moreover, a 86.4% of the initial specific capacitance of the composite was maintained after 3,000 times charge-discharge cycle tests. Based on these properties, it can be concluded that the composite could be applied as potential supercapacitor electrode materials.

Preparation of novolac-type phenol-based activated carbon with a hierarchical pore structure and its electric double-layer capacitor performance

  • Lee, Dayoung;Jung, Jin-Young;Park, Mi-Seon;Lee, Young-Seak
    • Carbon letters
    • /
    • v.15 no.3
    • /
    • pp.192-197
    • /
    • 2014
  • A hierarchical pore structured novolac-type phenol based-activated carbon with micropores and mesopores was fabricated. Physical activation using a sacrificial silicon dioxide ($SiO_2$) template and chemical activation using potassium hydroxide (KOH) were employed to prepare these materials. The morphology of the well-developed pore structure was characterized using field-emission scanning electron microscopy. The novolac-type phenol-based activated carbon retained hierarchical pores (micropores and mesopores); it exhibited high Brunauer-Emmett-Teller specific surface areas and hierarchical pore size distributions. The hierarchical pore novolac-type phenol-based activated carbon was used as an electrode in electric double-layer capacitors, and the specific capacitance and the retained capacitance ratio were measured. The specific capacitances and the retained capacitance ratio were enhanced, depending on the $SiO_2$ concentration in the material. This result is attributed to the hierarchical pore structure of the novolac-type phenol-based activated carbon.

SnO2 Mixed Banana Peel Derived Biochar Composite for Supercapacitor Application

  • Kaushal, Indu;Maken, Sanjeev;Kumar Sharma, Ashok
    • Korean Chemical Engineering Research
    • /
    • v.56 no.5
    • /
    • pp.694-704
    • /
    • 2018
  • Novel $SnO_2$ mixed biochar composite was prepared from banana peel developed as electrode material for supercapacitor using simple chemical co-precipitation method. The physiochemical and morphological properties of activated composite $SnO_2$ mixed biochar were investigated with XRD, FTIR, UV-vis, FESEM and HRTEM. The composite accounts for outstanding electrochemical behavior such as high specific capacitance, significant rate capability and leading to good cycle retention up to 3500 cycles when used as electrode material for supercapacitors. Highly permeable $SnO_2$ mixed biochar derived from banana peel exhibited maximum specific capacitance of $465F\;g^{-1}$ at a scan rate of $10mV\;s^{-1}$ by cyclic voltammetry (CV) and $476Fg^{-1}$ at current density of $0.15Ag^{-1}$ by charge discharge studies significantly higher about 47% than previously reported identical work on banana peel biochar.

Three-dimensional Graphene Aerogels for Electrochemical Energy Storage

  • Yun, Sol;Park, Ho Seok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.485.1-485.1
    • /
    • 2014
  • In this research, we report the synthesis of three-dimensional (3D) hierarchical porous graphene aerogels (hpGAs) for application to electrochemical energy storage. For electrochemical systems, the specific capacitance is a key parameter to evaluate the characteristics of electrode materials. By taking full advantage of large surface area, 3D hpGAs would achieve the larger specific capacitance over rGO film and GAs. Microscopic structures and topologies of hpGAs were investigated using field emission scanning electron microscopy and transmission electron microscopy. X-ray photoelectron spectroscopy was used to determine the chemical compositions of rGO film, GAs, and hpGAs. Raman spectra were recorded from 100 to 2500 cm-1 at room temperature using a Raman spectroscopy equipped with a ${\times}100$ objective was used. The specific area and pore distribution of GAs and hpGAs were obtained using a Brunauer-Emmett-Teller apparatus.

  • PDF

Fabrication and Electrochemical Characterization of Ion-selective Composite Carbon Electrode Coated with Sulfonated Poly(Ether Ether Ketone) (Sulfonated Poly(Ether Ether Ketone)을 코팅한 이온선택성 복합탄소전극의 제조 및 전기화학적 특성 분석)

  • Choi, Jae-Hwan;Park, Chan-Mi
    • Applied Chemistry for Engineering
    • /
    • v.24 no.3
    • /
    • pp.247-252
    • /
    • 2013
  • Sulfonated poly(ether ether ketone) (SPEEK) with a certain degree of sulfonation were synthesized by reacting PEEK and sulfuric acid at different reaction time. Then ion-selective composite carbon electrodes (ISCCE) were fabricated by coating the prepared SPEEK on the surface of carbon electrodes. The specific capacitance and resistance of the ISCCE were analyzed by electrical impedance spectroscopy. The ion exchange capacities (IEC) of the SPEEKs were measured in the range of 1.60~2.57 meq/g depending on the sulfonation time. The SPEEK more than 2.5 meq/g of IEC was considered unsuitable for fabricating the ISCCE because it was dissolved in water. The specific capacitance of the prepared ISCCE increased with increasing the IEC of coated SPEEKs and the capacitance was improved up to about 20% compared to that of uncoated carbon electrode. In addition, the electrical resistance of coating layer decreased significantly with increasing the IEC of coated SPEEKs. It is expected that the desalination efficiency of conventional capacitive deionization process can be improved by using the prepared ISCCE coated with SPEEK.