• 제목/요약/키워드: Specific capacitance

검색결과 297건 처리시간 0.027초

흡연이 수태음폐경 특정혈의 체표생체전하에 미치는 영향: 교차대조 연구 (The Effect of Smoking on the Bioelectrical Capacitance Measured at Specific Acupoints of Lung Meridian: A Cross-Over Study)

  • 김태민;이찬;이현진;임윤경
    • Korean Journal of Acupuncture
    • /
    • 제31권2호
    • /
    • pp.90-97
    • /
    • 2014
  • Objective : The objective of this study is to investigate the effects of smoking on the skin bioelectrical capacitance at specific acupoints of lung meridian. Methods : Bioelectrical capacitance was measured on bilateral six source points(bilateral LU10, LU9, LU7, LU6, LU5, LU1), and the changes with time and between left and right side were analyzed. Results : The skin bioelectrical capacitance at specific acupoints of lung meridian was significantly increased after smoking. And it recovered as time passed. The change of the skin bioelectrical capacitances at specific acupoints of lung meridian with time were similar between left and right. Conclusion : Smoking increases the bioelectrical capacitance at specific acupoints of lung meridian. There is no difference between the effects of smoking on the bioelectrical capacitance at left and right specific acupoints of lung meridian.

폴리피롤 첨가에 의한 supercapacitor용 저 임피던스 전극 (Electrode of Low Impedance by Polypyrrole Addition for Supercapacitor)

  • 김경민;장인영;강안수
    • 대한안전경영과학회:학술대회논문집
    • /
    • 대한안전경영과학회 2003년도 추계학술대회
    • /
    • pp.343-350
    • /
    • 2003
  • The best Ppy weight ratio was 7 wt% and the optimal electrode composition ratio was 78 : 17 : 5 wt.% of (MSP-20 : BP-20 =1 : 1), (Super P : Ppy =10 : 7) and P(VdF-co-HFP). Implantation of Ppy as the conducting agents have led to superior electrochemical characteristics because of the low of internal resistance and faradaic capacitance. The result of unit cell with Ppy 7 wt% were as follows: 28.02 Fig of specific capacitance, 1.34 Ω of DC-ESR and 0.36 Ω of AC-ESR. Unit cell showed a good stability up to 200 charge-discharge cycles, retaining 82% of their original capacity at 200 cycles. From the analysis of impedance, the electrodes with Ppy 7 wt% showed low ESR, low charge transfer resistance and quick reaction rate. It was inferred that quick charge-discharge was possible. As compared with the specific capacitance (rectangular shape) of CV, it was also concluded that the specific capacitance originated from thecompound phenomena of the faradaic capacitance by oxidation and reduction of Ppy and the non-faradaic capacitance by adsorption-desorption of activated carbon.

  • PDF

그래핀 플레이크 크기에 따른 전기 이중층 커패시터용 전극의 전기화학적 특성 (Electrochemical Properties of EDLC Electrodes with Diverse Graphene Flake Sizes)

  • 유혜련
    • 한국전기전자재료학회논문지
    • /
    • 제31권2호
    • /
    • pp.112-116
    • /
    • 2018
  • Electric double layer capacitors (EDLCs) are promising candidates for energy storage devices in electronic applications. An EDLC yields high power density but has low specific capacitance. Carbon material is used in EDLCs owing to its large specific surface area, large pore volume, and good mechanical stability. Consequently, the use of carbon materials for EDLC electrodes has attracted considerable research interest. In this paper, in order to evaluate the electrochemical performance, graphene is used as an EDLC electrode with flake sizes of 3, 12, and 60 nm. The surface characteristic and electrochemical properties of graphene were investigated using SEM, BET, and cyclic voltammetry. The specific capacitance of the graphene based EDLC was measured in a 1 M $TEABF_4/ACN$ electrolyte at the scan rates of 2, 10, and 50 mV/s. The 3 nm graphene electrode had the highest specific capacitance (68.9 F/g) compared to other samples. This result was attributed to graphene's large surface area and meso-pore volume. Therefore, large surface area and meso-pore volume effectively enhances the specific capacitance of EDLCs.

Electrochemical Capacitance of Activated Carbons Regenerated using Thermal and Chemical Activation

  • Park, Jung Eun;Lee, Gi Bbum;Hwang, Sang Youp
    • Journal of Electrochemical Science and Technology
    • /
    • 제12권3호
    • /
    • pp.339-345
    • /
    • 2021
  • Spent activated carbons (SACs) collected from a water treatment plant were regenerated and then adopted as electrochemical material in capacitors. The SACs used in this study were regenerated via two steps, namely thermal and chemical activation. However, during the activation process, the adsorbates were converted into ashes, which caused pore blockage and decreased specific surface area. The regenerated SACs were washed with acid solutions with different levels of acidity (strong: HCl, mild: H3PO4, and weak: H2O2) to remove the ashes. The regenerated SACs washed with HCl exhibited the highest specific surface area, although their capacitance was not the highest. Conversely, the specific surface area of regenerated SACs washed using H3PO4 was slightly lower than that of HCl, but exhibited higher capacitance and electrochemical stability. Although the strong acid removed the generated ashes in the pores efficiently, it could adversely affect their structural stability, which would lead to lower capacitance.

탄소나노튜브/폴리비닐리덴 플루오라이드 복합체로부터 제조된 탄소의 탄화온도에 따른 전기화학적 특성 (Inflence of carbonization temperature on electrochemical performance of multi-walled carbon nanotube/poly(vinylidene fluoride) composite-derived carbons)

  • 김지일;박수진
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2011년도 춘계학술대회 초록집
    • /
    • pp.214.2-214.2
    • /
    • 2011
  • In this work, porous carbon based electrodes are prepared by carbonization using poly(vinylidene fluoride) (PVDF)/carbon nanotube (CNT) composites to further increase the specific capacitance for supercapacitors. Electrode materials investigate the aspects of specific capacitance, pore size distribution and surface area: influence of carbonization temperatures of PVDF/CNT composites. The electrochemical properties are investigated by cyclic voltammetry, impedance spectra, and galvanostatic charge-discharge performance with in $TEABF_4$ (tetraethylammonium tetrafluoroborate)/acetonitrile as non-aqueous electrolyte. From the results, the highest value of specific capacitance of ~101 $F{\cdot}g^{-1}$ is obtained for the samples carbonized at $600^{\circ}C$. Furthermore, pore size of samples control be low 7 nm through carbonization process. It is suggested that micropores significantly contribute to the specific capacitance, resulting from improved charge transfer.

  • PDF

Activated carbons prepared from mixtures of coal tar pitch and petroleum pitch and their electrochemical performance as electrode materials for electric double-layer capacitor

  • Lee, Eunji;Kwon, Soon Hyung;Choi, Poo Reum;Jung, Ji Chul;Kim, Myung-Soo
    • Carbon letters
    • /
    • 제16권2호
    • /
    • pp.78-85
    • /
    • 2015
  • Activated carbons (ACs) were prepared by activation of coal tar pitch (CTP) in the range of $700^{\circ}C-1000^{\circ}C$ for 1-4 h using potassium hydroxide (KOH) powder as the activation agent. The optimal activation conditions were determined to be a CTP/KOH ratio of 1:4, activation temperature of $900^{\circ}C$, and activation time of 3 h. The obtained ACs showed increased pore size distribution in the range of 1 to 2 nm and the highest specific capacitance of 122 F/g in a two-electrode system with an organic electrolyte, as measured by a charge-discharge method in the voltage range of 0-2.7 V. In order to improve the performance of the electric double-layer capacitor electrode, various mixtures of CTP and petroleum pitch (PP) were activated at the optimal activation conditions previously determined for CTP. Although the specific capacitance of AC electrodes prepared from CTP only and the mixtures of CTP and PP was not significantly different at a current density of 1 A/g, the AC electrodes from CTP and PP mixtures showed outstanding specific capacitance at higher current rates. In particular, CTP-PP61 (6:1 mixture) had the highest specific capacitance of 132 F/g, and the specific capacitance remained above 90% at a high current density of 3 A/g. It was found that the high specific capacitance could be attributed to the increased micro-pore volume of ACs with pore sizes from 1 to 2 nm, and the high power density could be attributed to the increased meso-pore volume.

Preparation and capacitance properties of graphene based composite electrodes containing various inorganic metal oxides

  • Kim, Jeonghyun;Byun, Sang Chul;Chung, Sungwook;Kim, Seok
    • Carbon letters
    • /
    • 제25권
    • /
    • pp.14-24
    • /
    • 2018
  • Electrochemical properties and performance of composites performed by incorporating metal oxide or metal hydroxide on carbon materials based on graphene and carbon nanotube (CNT) were analyzed. From the surface analysis by field emission scanning electron microscopy and field emission transmission electron microscopy, it was confirmed that graphene, CNT and metal materials are well dispersed in the ternary composites. In addition, structural and elemental analyses of the composite were conducted. The electrochemical characteristics of the ternary composites were analyzed by cyclic voltammetry, galvanostatic charge-discharge tests, and electrochemical impedance spectroscopy in 6 M KOH, or $1M\;Na_2SO_4$ electrolyte solution. The highest specific capacitance was $1622F\;g^{-1}$ obtained for NiCo-containing graphene with NiCo ratio of 2 to 1 (GNiCo 2:1) and the GNS/single-walled carbon $nanotubes/Ni(OH)_2$ (20 wt%) composite had the maximum specific capacitance of $1149F\;g^{-1}$. The specific capacitance and rate-capability of the $CNT/MnO_2/reduced$ graphene oxide (RGO) composites were improved as compared to the $MnO_2/RGO$ composites without CNTs. The $MnO_2/RGO$ composite containing 20 wt% CNT with reference to RGO exhibited the best specific capacitance of $208.9F\;g^{-1}$ at a current density of $0.5A\;g^{-1}$ and 77.2% capacitance retention at a current density of $10A\;g^{-1}$.

페놀계 활성탄소섬유 전극과 유기성 전해질을 사용하는 전기이중층 캐패시터의 비축전용량 특성 (Specific Capacitance Characteristics of Electric Double Layer Capacitors with Phenol Based Activated Carbon Fiber Electrodes and Organic Electrolytes)

  • 안계혁;김종휘;신경희;노근애;김태환
    • 공업화학
    • /
    • 제10권6호
    • /
    • pp.822-827
    • /
    • 1999
  • 본 연구에서는 에너지 밀도가 큰 초고용량 캐패시터를 제작하기 위한 기초 연구로서 활성탄소섬유의 물성과 유기 전해질의 특성이 초고용량 캐패시터의 전기화학적 특성에 미치는 영향을 조사하였다. 유기성 전해질의 경우는 이온의 크기가 수용성 전해질 보다 훨씬 크기 때문에 탄소전극의 세공크기에 많은 영향을 받으며, 용량을 발현할 수 있는 유효세공의 크기가 커야 한다는 것을 알 수 있었다. 혼합용매를 이용한 전해액의 조성은 큰 비축전용량과 빠른 충전속도, 그리고 낮은 ESR 및 방전전류의 세기에 대한 높은 비축전용량 유지성 등의 우수한 충방전 특성을 나타내는 것을 알 수 있었고, 전해질의 높은 이온전도도가 용량발현 및 자가방전 특성에 큰기여를 하고 있으며, 전해질 이온의 크기는 충전속도에 많은 영향을 미치는 것을 알 수 있었다.

  • PDF

High Performance Wearable/Flexible Energy Storage Devices Based on Ultrathin $Ni(OH)_2$ Coated ZnO Nanowires

  • Shakir, Imran;Park, Jong-Jin;Kang, Dae-Joon
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제42회 동계 정기 학술대회 초록집
    • /
    • pp.597-597
    • /
    • 2012
  • A simple solution-based method is developed to deposit crystalline ultrathin (2 nm) nickel hydroxide on vertically grown ZnO nanowires to achieve high specific capacitance and long-term life for flexible and wearable energy storage devices. Ultrathin crystalline $Ni(OH)_2$ enables fast and reversible redox reaction to improve the specific capacitance by utilizing maximum number of active sites for the redox reaction while vertically grown ZnO nanowires on wearable textile fiber effectively transport electrolytes and shorten the ion diffusion path. Under the highly flexible state $Ni(OH)_2$ coated ZnO nanowires electrode shows a high specific capacitance of 2150 F/g (based on pristine $Ni(OH)_2$ in 1 M LiOH aqueous solution with negligible decrease in specific capacitance after 1000 cycles. The synthesized energy-storage electrodes are easy-to-assemble which can provide unprecedented design ingenuity for a variety of wearable and flexible electronic devices.

  • PDF

Supercapacitor performances of carbon nanotube composite carbon fibers from electrospinning

  • Yang, Kap-Seung;Kim, Chan;Lee, Wan-Jin
    • 한국섬유공학회:학술대회논문집
    • /
    • 한국섬유공학회 2003년도 The Korea-Japan Joint Symposium
    • /
    • pp.69-70
    • /
    • 2003
  • 10 wt.% of PAN was dissolved in N,N-dimethylformamide (DMF) and 1 wt. % of the multi wall carbon nanotubes (MWCNTs) was evenly dispersed in PAN solution by using ultrasonic miner. The 1 wt.% addition of MWCNT increased the specific capacitance by two times more from 82 to 160 F/g. The specific capacitance of carbon nanofiber(CNF)/carbon nanotube(CNT) composite capacitors was about 90 F/g at the current density of 500 mA/g. This value is even larger than the capacitance from the CNF electrode at the current density of 5 mA. The relatively high capacitance at the high current density is a practical importance for applications to supercapacitor in motor vehicle.

  • PDF