• Title/Summary/Keyword: Specific absorption rate (SAR)

Search Result 91, Processing Time 0.032 seconds

Characteristics of Specific Absorption Rate (SAR) in Electromagnetic (EM) Dosimetry

  • Hwang, Sun-Tae;Choi, Kil-Oung
    • Journal of Radiation Protection and Research
    • /
    • v.25 no.2
    • /
    • pp.109-114
    • /
    • 2000
  • The SI unit of specific absorption rate (SAR) in W/kg in the electromagnetic (EM) field as non-ionizing radiation is exactly same as the SI unit of absorbed dose rate in Gy/s in the ionizing radiation field. The SI unit of both physical quantities can be expressed in $[m^{\cdot}s^{-3}]$. Where, the unit of absorbed dose, Gy stands for Gray. In EM biological interactions, the SAR equations are derived and the characteristics of EM field energy absorption in terms of the SAR are discussed and described on the mathematical basis.

  • PDF

A Study on SAR Variation by Folding Angle and EMI Paint Distribution of Case for Mobile Handsets (휴대폰의 폴딩 각도와 휴대폰 케이스의 EMI 방지 도료 분포패턴에 따른 SAR 변화에 관한 연구)

  • 이규호;김창일;양운근
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.14 no.4
    • /
    • pp.421-430
    • /
    • 2003
  • In this paper, we propose a method to consider SAR(Specific Absorption Rate) at beginning stage of handsets development. First, simulation was carried out with changing folding angle from 150$^{\circ}$to 142$^{\circ}$. Simulation results show that SAR value is decreased with decreasing the folding angle. When folding angle is 142$^{\circ}$, error between simulation and measurement results is about 3.95 %. Second, we made some experiments with EMI (Electromagnetic Interference) paint, and its results show that different pattern of EMI paint have different SAR values. After removing EMI paint at the lower part of antenna feeding point, we got the decrease efficiency of 15.46 % for SAR value. When we applied zigzag painting pattern, we got the highest SAR decrease efficiency.

Characteristics of the Detection Voltages of an E-field Sensing Probe in SAR Measurement System (전자파 비흡수율(SAR) 측정용 전기장 프로브의 검파 전압 특성)

  • Gimm Youn-Myoung;Lee Seung-Bae;Kim Ki-Hwea
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.16 no.2 s.93
    • /
    • pp.217-221
    • /
    • 2005
  • The E-field intensity by mobile handsets in a phantom is measured by a 3 axes miniature probe. The detected DC voltage by a Schottky diode in a probe has nonlinear characteristics by itself. If a pertinent diode compression point (DCP) is applied for the compensation specific absorption rate(SAR) as much as 200 W/kg can be measured with a good measurement accuracy.

Analysis of Specific Absorption Rate in Magnetic Resonance Imaging (자기공명영상장치에서 전자파흡수율 분석)

  • Han, Jae-Bok;Hong, Seong-Hun;Choi, Nam-Gil;Seong, Ho-Jin
    • The Journal of the Korea Contents Association
    • /
    • v.13 no.2
    • /
    • pp.308-313
    • /
    • 2013
  • In this paper, we measured specific absorption rate (SAR) using characteristic variables such as flip angle, repetition time (TR) and echo time (TE) at magnetic resonance imaging. The subject was applied to same scan technique from body weight 10 kg to 90 kg, were measured for the average SAR and the peak SAR values according to the change of parameter. SAR with different body weight levels was not seen a significant change at TE but it increased in the larger flip angle and the shorter TR. SAR value was within the limits of human head acceptable standard and SNR in segmental body weights was not proportional to the increase of body weights. In conclusion, this study can be helpful for diagnosis by using appropriate parameters which obtained the various contrast and SNR.

Simulation Methods of Electromagnetic Wave Specific Absorption Rate (SAR) and the Simulation Results of Human Head Model with Dental Implants in 5G Frequency Band (전자파 흡수율(SAR) 시뮬레이션 기법과 5G 주파수 대역에서의 인공 치아가 삽입된 인체 머리 모델의 전자파 흡수율 시뮬레이션 결과)

  • Kim, Chang-Gyun;Lee, Seongsoo
    • Journal of IKEEE
    • /
    • v.22 no.3
    • /
    • pp.854-857
    • /
    • 2018
  • It becomes important to analyze the effects of electromagnetic wave on human body, as various wireless equipments are widely used in daily life. SAR (specific absorption rate) is a parameter of the effects of electromagnetic wave on human body. However, it considers only human tissues, and it is difficult to evaluate the effects of electromagnetic wave when metal artifacts are inserted such as dental implants. This paper introduces a method to simulate SAR, and gets its simulated results. Simulated SAR of human head model with dental implants in 30 GHz 5th generation mobile communications (5G) frequency band is $2.50{\times}10^{-3}W/kg$ in maximum and $8.58{\times}10^{-7}W/kg$ in average. These values are absolutely below 1.6 W/kg Korean domestic SAR limit.

Specific Absorption Rate Values of Handsets in Cheek Position at 835 MHz as a Function of Scaled Specific Anthropomorphic Mannequin Models

  • Lee, Ae-Kyoung;Choi, Hyung-Do;Choi, Jae-Ick;Pack, Jeong-Ki
    • ETRI Journal
    • /
    • v.27 no.2
    • /
    • pp.227-230
    • /
    • 2005
  • A specific anthropomorphic mannequin (SAM) model was used to investigate the relation between local specific absorption rate (SAR) and head size. The model was scaled to 80 to 100% sized models at intervals of 5%. We assumed that the shell of the SAM model has the same properties as the head-equivalent tissue. Five handsets with a monopole antenna operating at 835 MHz were placed in the approximate cheek position against the scaled SAM models. The handsets had different antenna lengths, antenna positions, body sizes, and external materials. SAR distributions in the scaled SAM models were computed using the finite-difference time-domain method. We found that a larger head causes a distinct increase in the spatial peak 1-voxel SAR, while head size did not significantly change the peak 1-g averaged-SAR and 10-g averaged-SAR values for the same power level delivered to the antenna.

  • PDF

A Study on SAR Reduction Method for Mobile Handsets (휴대 단말기의 SAR 저감법에 관한 연구)

  • Hwang Jae-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.9 no.4
    • /
    • pp.833-838
    • /
    • 2005
  • In this paper, we propose SAR(Specific absorption rate) reduction methods based on surface electric field distribution relation for mobile handsets. Proposed the new method that is able to consider improvement of the SAR from the very beginning step of developing the mobile handsets. Analysis of mobile handset with human body(head) using finite element method(FEM). Results of this method, SAR reduced about $50\;\%$.

The analysis of RF dosimetric uncertainties by using statistical method at in-vivo and in-vitro experiments (RF 전자기장 생체 영향 실험에서 통계적 방법을 통한 전자기장 노출 불확실성 분석)

  • Choi, Sung-Ho;Kim, Nam
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2003.11a
    • /
    • pp.74-78
    • /
    • 2003
  • This paper shows the dosimetric uncertainties of electromagnetic field at in-vivo and in-vitro experiments. For more accurate consequences of these researches, we have tried to find out any correlations among output power, power density and specific absorption rate(SAR) with the results of in-vivo, in-vitro tests and SAR reports of cellular phone and PDA. In the case of in-vivo tests, the power density has close statistical correlations with SAR value and in the event of in-vitro tests, the output power has considerable statistical correlations with SAR containing duty factor. On the other hand, we found that both power density and output power don't have any close correlations with SAR. And, we obtained fitted regression form among frequency, power density and SAR containing duty factor through multiple linear regression analysis.

  • PDF

A Study on SAR Attenuation by Using Loop-type Ground for Mobile Handsets (루프 형태의 접지판을 이용한 휴대폰의 SAR 감쇄에 관한 연구)

  • Lee Won-Kew;Son Ji-Myoung;Han Jun-Hee;Yang Woon-Geun
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.17 no.9 s.112
    • /
    • pp.821-828
    • /
    • 2006
  • In this paper, we investigated SAR(Specific Absorption Rate) value variation by the position and size of the loop-type ground located in a test mobile handset. We carried out simulations on SAR value with loop-type grounds in rear case of a mobile handset, and obtained results showed that different positions and sizes of loop-type grounds had different SAR values. Among investigated positions and sizes of loop-type grounds, the small size case-C showed the best performance; i.e., it showed a decrease efficiency of 8.70 %. And in this case, it showed the highest induced electric-field distribution in the loop-type ground. In the simulation, the folding angle was set to $160^{\circ}$.

Phone Case using the EBG Structure for Reducing SAR (EBG 구조를 사용한 전자파 인체 흡수 차단 휴대폰 케이스)

  • Oh, Doyoung;Yoo, Hyoungsuk
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.1
    • /
    • pp.78-81
    • /
    • 2015
  • This paper investigates the performance of phone case with different permittivities like plastic, urethane and silicone. Then, we put an electromagnetic band gap (EBG) structure in phone case to reduce the specific absorption rate (SAR). In order to design the phone case, a loop antenna for PCS 1900 band was used. The phone case consists of a hairpin-like EBG structure that is more compact than other EBG structures. The SEMCAD X fdtd simulation results showed that, this proposed phone case can reduce SAR by 13 - 30% at similar power that is radiated by the antenna. This phone case can be used in future to reduce the SAR from mobile phones.