• Title/Summary/Keyword: Specific Speed

Search Result 1,411, Processing Time 0.025 seconds

A Study on the Priority of High-Speed Railway Customer Service Quality Factors Using AHP (AHP를 활용한 고속철도 고객 서비스품질 요인 우선순위에 관한 연구)

  • Kim, Hee Jae;Kim, Si Gon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.44 no.2
    • /
    • pp.257-262
    • /
    • 2024
  • Today, high-speed rail is gradually increasing in importance as an eco-friendly means of transportation responsible for the movement of people between regions. In the past, problems of inefficiency continued due to monopolistic operation of the railway industry, and with the introduction of a public enterprise competition system, KTX and SRT operating organizations are making efforts to expand service quantity and improve quality. However, the high-speed rail service quality evaluation was limited to modifying and supplementing indicators from the operator's perspective suitable for past quality evaluations, and the evaluation target or method was not specific. Therefore, in this study, we developed a hierarchical model to measure high-speed rail customer service quality based on the model of Brady and Cronin(2001) and applied the analytical hierarchical decision-making method(AHP) to derive the priorities of Korea's high-speed rail competitiveness factors. Based on the results, it is believed that introducing reasonable and standardized service quality indicators will contribute to establishing a marketing strategy to improve the customer service competitiveness of high-speed rail operators.

The Disruption of Saccharomyces cerevisiae Cells and Release of Glucose 6-Phosphate Dehydrogenase (G6PDH) in a Horizontal Dyno Bead Mill Operated in Continuous Recycling Mode

  • Mei Chow Yen;Ti Tey Beng;Ibrahim Mohammad Nordin;Ariff Arbakariya;Chuan Ling Tau
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.10 no.3
    • /
    • pp.284-288
    • /
    • 2005
  • Baker's yeast was disrupted in a 1.4-L stainless steel horizontal bead mill under a continuous recycle mode using 0.3 mm diameter zirconia beads as abrasive. A single pass in continuous mode bead mill operation liberates half of the maximally released protein. The maximum total protein release can only be achieved after passaging the cells 5 times through the disruption chamber. The degree of cell disruption was increased with the increase in feeding rate, but the total protein release was highest at the middle range of feeding rate (45 L/h). The total protein release was increased with an increase in biomass concentration from 10 to $50\%$(w/v). However, higher heat dissipation as a result of high viscosity of concentrated biomass led to the denaturation of labile protein such as glucose 6-phosphate dehydrogenase (G6PDH). As a result the highest specific activity of G6PDH was achieved at biomass concentration of $20\%$(ww/v). Generally, the degree of cell disruption and total protein released were increased with an increase in impeller tip speed, but the specific activity of G6PDH was decreased substantially at higher impeller tip speed (14 m/s). Both the degree of cell disruption and total protein release increased, as the bead loading increased from 75 to $85\% (v/v)$. Hence, in order to obtain a higher yield of labile protein such as G6PDH, the yeast cell should not be disrupted at biomass concentration and impeller tip speed higher than $20\%(w/v)$ and 10 m/s, respectively.

Development of a Moldboard Plow to Invert Furrow Slice at the Same Position (토양의 제자리 반전을 위한 몰드보드 플라우의 개발)

  • 이규승;박원엽;권병기
    • Journal of Biosystems Engineering
    • /
    • v.29 no.1
    • /
    • pp.9-20
    • /
    • 2004
  • On the basis of design theory of soil inversion, two types of moldboard plow with secondary soil mover was designed and constructed to invert furrow slice at same position with furrow bottom. A series of soil bin experiment was carried to investigate the performance of prototypes. First prototype of new concept plow showed two kinds of problems during the preliminary experiment. For the plowing depth of 6cut the prototype did not invert the furrow slice, instead it just cut furrow bottom and the furrow slice returned to the original position. For the plowing depth of 8cm, there was soil clogging problem at the rear part of plow. From the above results it was concluded that the first prototype can not be used for the inversion of furrow slice at same position with furrow bottom. Second prototype could invert furrow slice at the same position with furrow bottom, but the performance was affected by soil moisture content soil hardness and plowing speed very much. For the higher soil moisture content, for the higher soil hardness and higher plowing speed, the prototype showed higher soil inversion performance. For the second prototype the inversion ratio was almost 100%, inversion angle was in the range of 90 to 100 degree and side displacement was less than 4 cm. But the furrow slice was not continuous, it was cut in the length of 30 to 40 cm. The reason why the furrow slice was cut in that length is blamed for the design of moldboard surface. The specific draft of prototype was in the range of 37.24 kN/㎡ to 42.14 kN/㎡ this value is a little higher than that of the conventional plow, or from 30.38 kN/㎡ to 33.32 kN/㎡. But the difference was not so big. The inversion performance of the second prototype for the field experiment was much better than that of soil bin experiment due to the better soil and operational conditions. Sticky and compacted soil conditions, and higher plowing speed was suitable for the plowing operation of the second prototype

A New Worker Policy for Self-Balancing Production Line with Stations

  • Hirotani, Daisuke;Morikawa, Katsumi;Takahashi, Katsuhiko
    • Industrial Engineering and Management Systems
    • /
    • v.10 no.3
    • /
    • pp.197-202
    • /
    • 2011
  • In traditional production lines, such as assembly lines, each worker is usually assigned to a particular fixed work, and decreasing the task to master the assigned work is valuated. However, when an imbalance exists between workers' speeds, if a worker delays the overall work in the production line, the production rate of the particular line will also decrease. To avoid this problem, the "Self-Balancing Production Line" was introduced. In this type of production line, each worker is assigned work dynamically, and when specific conditions are satisfied, production remains balanced. Characteristics of these lines that can be preempted at any place have already been analyzed by some researchers. A previous paper examined the situation in which only a single worker can process one machine and cannot preempt processing, and the improved policy of an ordinary selfbalancing production line, which specifies which stations workers can process and how workers can behave. This policy achieveda high production rate with only four stations and two workers (Buzacott, 2002). In that paper, worker processing stations and the behavior of a specific worker were limited, andthe paper focused only on specific stations and workers. Therefore, it is not applicable to any worker sequence. In this paper, we focus on other ways to decrease cycle time. In this kind of line, a worker processes at his or her speed. Therefore, if a worker is assigned stations according to his or her speed, the line can decrease cycle time. To do so, we relax the assumptions of this type of line and set a new condition. Under these conditions, we compare our results to the results of previous papers.

On-Road Testing and Calculation of Emission Factor and Fuel Economy (도로상의 배출가스 측정에 의한 배출계수 및 연료소비효율 산출 연구)

  • Lee, Tae-Woo;Lee, Beom-Ho;Cho, Seung-Hwan;Park, Jun-Hong;Eom, Myoung-Do;Kim, Jong-Choon;Lee, Dae-Yup
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.17 no.3
    • /
    • pp.90-101
    • /
    • 2009
  • An objective of this study is to suggest a procedure to evaluate vehicle emissions regardless of the driving pattern. Field experiments using portable emission measurement system were conducted under the real world driving cycle. Standardized average for NOx, $CO_2$ emission and fuel consumption rates were calculated while the vehicle specific power distribution within each vehicle speed bin was taken into consideration. Composite emission factor and fuel economy, which were obtained based on the standardized average results and traffic statistics, showed good similarity to those acquired through the conventional chassis dynamometer tests qualitatively as well as quantitatively. Considering that a conventional method obviously has a limitation to reflect various characteristics of the real world, the new approach suggested in this study can be used as an alternative procedure to collect more specific data to establish the mobile emission factors.

A Study on the Noise Assessment of Specific Vehicles at Metropolitan Landfill Area Using Noise Map (소음지도를 이용한 특정차량의 소음평가)

  • Park, In-Sun;Park, Sang-Kyu
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.11
    • /
    • pp.1064-1068
    • /
    • 2007
  • Around metropolitan landfill area, specific vehicles such as garbage carrying trucks make noise problems and residents near landfill area organized to protest. However, it is difficult to distinguish the effect of noise of specific vehicles (ex: garbage trucks). In this study, noise map and CRTN were used to assess the noise from specific vehicles. Noise levels, which were predicted by using measured parameters such as traffic flow, traffic speed, composition of traffic for 1 year, were compared with measured results of noise level.

Evaluation of rock cutting efficiency of the actuated undercutting mechanism

  • Jeong, Hoyoung;Wicaksana, Yudhidya;Kim, Sehun;Jeon, Seokwon
    • Geomechanics and Engineering
    • /
    • v.29 no.3
    • /
    • pp.359-368
    • /
    • 2022
  • Undercutting using an actuated disc cutter (ADC) involves more complex cutting mechanism than traditional rock cutting does, requiring the application of various new cutting parameters, such as eccentricity, cutter inclination angle, and axis rotational speed. This study presents cutting-edge laboratory-scale testing equipment that allows performing ADC tests. ADC tests were carried out on a concrete block with a specified strength of 20 MPa, using a variety of cutting settings that included penetration depth (p), eccentricity (e), and linear velocity (v). ADC, unlike pick and disc cutting, has a non-linear cutting path with a dynamic cutting direction, requiring the development of a new method for predicting cutting force and specific energy. The influence of cutting parameters to the cutter forces were discussed. The ratio of eccentricity to the penetration depth (e/p) was proposed to evaluate the optimal cutting condition. Specific energy varies with e/p ratio, and exhibits optimum values in particular cases. In general, actuated undercutting may potentially give a more efficient cutting than conventional pick and disc cutting by demonstrating reasonably lower specific energy in a comparable cutting environment.

Development of Speed Limits Estimation Model and Analysis of Effects in Urban Roads (도시부도로 제한속도 산정모형 개발 및 효과분석 연구)

  • Kang, Soon Yang;Lee, Soo Beom;Lim, Joon Beom
    • Journal of the Korean Society of Safety
    • /
    • v.32 no.2
    • /
    • pp.132-146
    • /
    • 2017
  • Appropriate speed limits at a reasonable level in urban roads are highly important factors for efficient and safe movement. Thus, it is greatly necessary to develop the objective models or methodology based on engineering study considering factors such as traffic accident rates, roadside development levels, and roadway geometry characteristics etc. The purpose of this study is to develop the estimate model of appropriate speed limits at each road sections in urban roads using traffic information big data and field specific data and to review the effects of accident decrease. In this study, the estimate method of appropriate speed limits in directional two or more lanes of urban roads is reflecting features of actual variables in a form of adjustment factor on the basis of the maximum statutory speed limits. As a result of investigating and testing influential variables, the main variables to affect the operating speed are the function of road, the existence of median, the width of lane, the number of traffic entrance/exit path and the number of traffic signal or nonsignal at intersection and crosswalk. As a result of testing this model, when the differences are bigger between the real operating speed and the recommended speed limits using model developed in this study, the accident rate generally turns out to be higher. In case of using the model proposed in this study, it means accident rate can be lower. When the result of this study is applied, the speed limits of directional two or more lane roads in Seoul appears about 11km/h lower than the current speed limits. The decrease of average operating speed caused by the decrease of speed limits is 2.8km/h, and the decrease effect of whole accidents according to the decrease of speed is 18% at research road. In case that accident severity is considered, the accident decrease effects are expected to 17~24% in fatalities, 11~17% in seriously injured road user, 6~9% in slightly injured road user, 5~6% in property damage only accidents.

Effects of Screw Speed, Moisture Content, and Die Temperature on Texturization of Extruded Soy Protein Isolate (스크루 회전속도, 수분 함량과 사출구 온도가 압출성형 분리대두단백의 조직화에 미치는 영향)

  • Park, Ji Hoon;Kang, Dae Il;Ryu, Gi Hyung
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.45 no.8
    • /
    • pp.1170-1176
    • /
    • 2016
  • The aim of this study was to investigate the effects of screw speed, moisture content, and die temperature on the physical properties of extruded soy protein isolate. Extrusion conditions were moisture content (20 and 25%) and die temperature (120, 130, and $140^{\circ}C$) at a fixed screw speed of 250 rpm. The other extrusion conditions for screw speed (150, 200, 250, 300, and 330 rpm) were a fixed moisture content and die temperature of 30% and $140^{\circ}C$, respectively. Specific mechanical energy input decreased as die temperature increased from 120 to $140^{\circ}C$, whereas specific mechanical energy input increased as screw speed increased from 150 to 330 rpm. Expansion ratio and specific length increased as die temperature increased. Breaking strength decreased as die temperature increased and moisture content decreased. A lower moisture content resulted in a greater color difference. Integrity index increased as die temperature increased from 120 to $140^{\circ}C$ and moisture content decreased from 25 to 20%. Nitrogen solubility index decreased as screw speed increased from 150 to 330 rpm. Nitrogen solubility index was lowest at $2.83{\pm}0.51%$ as screw speed decreased to 150 rpm. In conclusion, moisture content was a more important factor than die temperature for texturization of soy protein isolate.

Development of Intelligent Multiple Camera System for High-Speed Impact Experiment (고속충돌 시험용 지능형 다중 카메라 시스템 개발)

  • Chung, Dong Teak;Park, Chi Young;Jin, Doo Han;Kim, Tae Yeon;Lee, Joo Yeon;Rhee, Ihnseok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.9
    • /
    • pp.1093-1098
    • /
    • 2013
  • A single-crystal sapphire is used as a transparent bulletproof window material; however, few studies have investigated the dynamic behavior and fracture properties under high-speed impact. High-speed and high-resolution sequential images are required to study the interaction of the bullet with the brittle ceramic materials. In this study, a device is developed to capture the sequence of high-speed impact/penetration phenomena. This system consists of a speed measurement device, a microprocessor-based camera controller, and multiple CCD cameras. By using a linear array sensor, the speed-measuring device can measure a small (diameter: up to 1 2 mm) and fast (speed: up to Mach 3) bullet. Once a bullet is launched, it passes through the speed measurement device where its time and speed is recorded, and then, the camera controller computes the exact time of arrival to the target during flight. Then, it sends the trigger signal to the cameras and flashes with a specific delay to capture the impact images sequentially. It is almost impossible to capture high-speed images without the estimation of the time of arrival. We were able to capture high-speed images using the new system with precise accuracy.