• Title/Summary/Keyword: Specific Modulus

검색결과 266건 처리시간 0.023초

금속복합재료의 열잔류 응력과 강화재의 불규칙 분산 상태를 고려한 3차원 유한 요소 해석 (Three Dimensional Finite Element Analysis of Particle Reinforced Metal Matirx Composites Considering the Thermal Residual Stress and the Non-uniform Distribution of Reinforcements)

  • 강충길;오진건
    • 한국정밀공학회지
    • /
    • 제17권6호
    • /
    • pp.199-209
    • /
    • 2000
  • Particles reinforced MMCs have higher specific modulus, higher specific strength, better properties at elevated temperatures and better wear resistance than monolithic metals. But the coefficient of thermal expansion(CTE) of Al6061 is 5 times larger than that of SiCp. The discrepancy of CTE makes some residual stresses inside of MMCs. This work investigates Si$C_p$/Al6061 composites at high temperatures in the microscopic view by three-dimensional elasto-plastic finite element analyses and compares the analytical results with the experimental ones. The theoretical model is not able to consider the nonuniform shape of particle. So the shape of particle is assumed to be perfect global shape. And also particle distribution is not homogeneous in experimental specimen. It is assumed to be homogeneous in simulation model. The type of particle distribution is face-centered cubic array(FCC array). Furthermore, non-homogeneous distribution is modeled by combination of several volume fractions.

  • PDF

GC 연삭숫돌을 이용한 탄소섬유 에폭시 복합재료의 평면 연삭특성에 관한 연구 (A Study on the Plain Grinding Characteristics of Carbon Fiber Epoxy Composite with the GC Grinding Wheel)

  • 한흥삼
    • 한국생산제조학회지
    • /
    • 제9권4호
    • /
    • pp.34-47
    • /
    • 2000
  • Since carbon fiber epoxy composite materials have excellent properties for structures due to their high specific strength, high specific modulus, high damping and low thermal expansion, the hollow shafts made of carbon fiber epoxy composites have been widely used for power transmission shafts for motor vehicles , spindles of machine tools, motor base, bearing mount for tool up and manufacturing. The molded composite machine elements are not usually accurate enough for mechanical machine elements, which require turning drilling , cutting and grinding. The experiment are surface grinding wheel GC60 to the carbon fiber epoxy composite specimen with respect to staking angle [0]nT , [45]nT, [90]nT on the CNC grinding machine. In this paper, the surface grinding characteristics of composite plate, which are surveyed experimentally and analytically with respect to the grinding force, surface roughness and wheel loading according to the variable depth of cut, wheel velocity and table feed rate are investigated.

  • PDF

단부형상을 갖는 무배향/일방향 복합적층판의 압축성형에 있어서 3차원 유한요소해석 (Three-Dimensional Finite Element Analysis for Compression Molding of Step-Type Random/Unidirectional Polymer Composite Laminates)

  • 송강석;채경철;김이곤
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 1999년도 추계학술발표대회 논문집
    • /
    • pp.101-106
    • /
    • 1999
  • Fiber reinforced plastic composites is widely used to make be lightening of aircraft and automotive owing to having high specific strength and specific modulus. And it is very important to know a charge shape in order to have good products in the compression molding. In particular, the product such as a bumper beam is composed of the random and unidirectional composite mats. Its deformation and charge shape are very different by stack type of random and unidirectional mats. In this paper, the characteristics of flow fronts such as a bulging phenomenon for step-type random/unidirectional composite mats and slip parameters are studied numerically. And the effects of viscosity ratio and stack type on the mold filling parameters are also discussed.

  • PDF

현장재생골재를 사용한 포장용 콘크리트의 기본 물성실험 (Evaluation of Concrete Material Properties for Pavement Using Job-site Processed Recycled Aggregates)

  • 양성철;김남호
    • 한국도로학회논문집
    • /
    • 제15권2호
    • /
    • pp.57-63
    • /
    • 2013
  • PURPOSES : This study was performed to investigate a feasibility of job-site use of recycled concrete aggregate exceeding 3% of absorption rate. Test variables are coarse aggregate types such as natural aggregate, job-site processed recycled aggregate, and recycled aggregate processed from the intermediate waste treatment company. METHODS : First, aggregate properties such as gradation, specific gravity and absorption rate were determined. Next a basic series of mechanical properties of concrete was tested. RESULTS : All strength test results such as compression, flexure and modulus were satisfied for the minimum requirements. Finally up to first 48 elapsed days the shrinkage strains of concretes made from both recycled aggregates (in case of volume-surface ratio of 300) appeared to be greater than 26% of the companion concretes made from natural aggregates. CONCLUSIONS : Drying shrinkage result is ascribed to greater absorption rate and specific gravity of those specimens made from recycled aggregate. This may be reduced with an addition of admixtures.

고온 복합재료의 경화 모니터링을 위한 유전센서의 개발 (Development of the Dielectric sensor for the Cure monitoring of the high temperature Composites)

  • 김일영;최진경;최진호;이대길
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2000년도 추계학술발표대회 논문집
    • /
    • pp.22-28
    • /
    • 2000
  • The fiber reinforced composite materials is widely used in aircraft, space structures and robot arms because of high specific strength and high specific modulus. The on-line cure monitoring during the cure process of the composite materials has become an important research area for the better quality and productivity. In this paper, the dielectric circuit of the wheatstone bridge type for measuring the dissipation factor was designed and manufactured. Also, the dielectric sensor for the cure monitoring of the high temperature composites was developed. The residual thermal stresses of the dielectric sensor were analyzed by the finite element method and its dielectric characteristics under high temperature were evaluated. The on-line cure monitoring of the BMI resin was performed using the wheatstone bridge type circuit and developed high-temperature dielectric sensor.

  • PDF

A Study on the Mix Design and Quality Factors of the Combined High Flowing Concrete Using High Belite Cement

  • Kwon, Yeong-Ho
    • KCI Concrete Journal
    • /
    • 제14권3호
    • /
    • pp.121-129
    • /
    • 2002
  • This study investigates experimentally into the design factors and quality variations having an effect on the properties of the combined high flowing concrete to be poured in the slurry wall of Inchon LNG in-ground receiving terminal. Especially, high belite cement and lime stone powder as cementitious materials and viscosity agent in order to improve self-compaction and hydration heat are used in this study. Water-cement ratio(W/C), fine aggregate volume ratio(Sr) and coarse aggregate volume ratio(Gv) as design factors of the combined high flowing concrete are applied to determine the optimum mix design proportion. Also quality variations for sensitivity test are selected items as followings. (1)Surface moisture(5cases) and (2)Fineness modulus of fine aggregate(5cases), (3)Concrete temperature(3cases), (4)Specific surface(3cases) and particle size of lime stone powder. As experimental results, water-cement ratio, fine and coarse aggregate volume ratio are shown as the optimum range 51%, 43% and 53% separately considering site condition of slurry wall. Also quality factors by sensitivity test should be controlled in the following ranges. (1) Surface moisture :to.67% and (2)Fineness modulus 2.6$\pm$0.2 of fine aggregate, (3)Concrete temperature l0-20t, (4) Specific surface 6,000$\textrm{cm}^2$/g and particle size 9.7$\pm$1.0${\mu}{\textrm}{m}$ of lime stone powder. Based on the results of this study, the optimum mix design proportion of the combined high flowing concrete are selected and poured successfully in the slurry wall of LNG in-ground tank.

  • PDF

폐비닐 골재가 혼합된 시멘트 콘크리트의 열 특성 (Thermal Characteristics of Cement Concrete Mixed with Wasted Vinyl Aggregates)

  • 염우성;안기홍;유주호;정진훈
    • 한국도로학회논문집
    • /
    • 제16권6호
    • /
    • pp.79-86
    • /
    • 2014
  • PURPOSES : In this study, wasted vinyl aggregate, which possesses better thermal properties than natural aggregate, was used in cement concrete mixture to develop more economical concrete with thermal insulation and freeze prevention effects. METHODS : Slump and air content of the fresh concrete, which substituted its 0%, 5%, and 10% of coarse aggregate with wasted vinyl aggregate, were measured. Compressive strength, Poisson's ratio, elastic modulus, and splitting tensile strength of hardened concrete were measured by laboratory tests. Thermal properties of concrete such as coefficient of thermal expansion, thermal conductivity, and specific heat were also measured according to replacement ratio of wasted vinyl aggregate. Finally, the thermal insulation and freeze prevention effectiveness of the concrete mixed with wasted vinyl aggregate was confirmed through finite element analysis of road pavement crossing above concrete box culvert made from wasted vinyl aggregate. RESULTS : Even though the physical properties of wasted-vinyl-aggregate concrete such as compressive strength, Poisson°Øs ratio, elastic modulus, and splitting tensile strength were inferior to those of ordinary concrete, they met requirements for structural concrete. The thermal properties of concrete were improved by wasted vinyl aggregate because it decreased thermal conductivity and increased specific heat of the concrete. According to the result of finite element analysis, temperature variation in pavement subgrade was mitigated by box culvert made from wasted-vinyl-aggregate concrete. CONCLUSIONS : Through the laboratory test and finite element analysis of this study, it was concluded that the concrete structures made from wasted vinyl aggregate showed thermal insulation and freeze prevention effects.

한국산 잎담배의 역학적 특성 (Mechanical properties of Korea Tobacco)

  • 김기환;주영석
    • 한국연초학회지
    • /
    • 제5권2호
    • /
    • pp.63-69
    • /
    • 1983
  • The tensile strength (Pm) . elongation percentage ($\varepsilon$) , elastic modulus (I) , and specific volume (Sv) were calculated from the data of tensile characteristics of By 104 .and Burley 21 tobacco leaves, which were measured over a relative humidity from 60 to 80% at $20\pm2^{\circ}C$.The important results obtained were as follows.(1) Tensile strength(Pm) The "Pm"of By 104 was greater than that of Burley at. The "Pm"in both varieties were increased toward the upper stalk position and according to the decrease of relative humidity. The "Pm" of parallel piece to tile vein in a leaf were greater than that of right angle piece to the vein. (2) Elongation percentage ($\varepsilon$). The "s" of By 104 was higher than that of Burley 21. The "s" in both varieties were increased toward the upper stalk position and according to the increase of relative humidity. The "s" of parallel Piece to the vein in a Burley leaf was greater than that of right angle piece to the vein. (3) Elastic modulus (E) The "E" of Burley 21 leaf was higher than that of By 104. The "E" in both varieties were increased toward the lower stalk position and according to decrease of relative humidity. The "E"of parallel piece to the vein in both varieties leaves were greater than that of right angle piece to tile vein. (4) Specific volume (Sv) The "Sv" of Burley 21 leaf was increased than that of By 104. The "Sv" in both varieties were increased toward the lower stalk position and according to the decrease of relative humidity.ot;Sv" in both varieties were increased toward the lower stalk position and according to the decrease of relative humidity.dity.

  • PDF

폐타이어를 이용한 목질계 복합판넬의 연구 - 열압조건에 의한 재질특성 - (Studies on Wood-based Composite Panel with Waste Tire - Properties of Composite Boards in Relation to Hot Pressing Conditions -)

  • 이원희;박상진
    • Journal of the Korean Wood Science and Technology
    • /
    • 제25권4호
    • /
    • pp.29-38
    • /
    • 1997
  • The effect and control of wood property of reconstituted composite panels for improved board properties by wood-waste materials and development of combination method for heterogeneous materials have been of interest to the wood science researchers. The purpose of this study is to consider the properties in relation to hot pressing conditions and to develope the optimum hot pressing condition with waste wood and waste tire for the manufacturing of composite boards. The study of composite boards for recycling of wood and waste tire is nothing up to the present. Physical and mechanical properties such as specific gravity, moisture content, swelling coefficient, modulus of rupture and modulus of elasticity in bending test were studied. The condition of 3-stage press time for the lowest moisture content of composite board was $4{\rightarrow}3{\rightarrow}3$ minutes. Specific gravity of composite panels was affected mainly by the amount of rubber chip. Because of the low rigidity and high elasticity in rubber chip, it is considered the composite panel was adequate material in the place of compression load, but not bending load. Therefore, it was concluded that a use of rubber-based wood composite panel is proper to the interior materials such as floor a room than exterior materials. From the test results, the most optimum hot pressing conditions were $4{\rightarrow}3{\rightarrow}3$ minutes for 3-stage press time and $45{\rightarrow}20{\rightarrow}5kg/cm^2$ for 3-stage press pressure. The rubber-based wood composite panel was very excellent in elasticity by combination of rubber chip in comparison with existing other wood-based materials. Therefore, it was considered that rubber-based wood composites can be applicable to every interior materials such as floor a room and will be expected to effective reuse and recycle of waste tires and wood-waste materials, and will be contribute to protection of environment pollution in earth.

  • PDF

Understanding the Technical Properties of Delonix regia (HOOK.) RAF. Wood: A Lesser Used Wood Species

  • Funke Grace Adebawo;Olayiwola Olaleye Ajala;Olaoluwa Adeniyi Adegoke;Timileyin Samuel Aderemi
    • Journal of Forest and Environmental Science
    • /
    • 제39권1호
    • /
    • pp.55-64
    • /
    • 2023
  • Properties of a lesser-used wood species were investigated to determine its potential for structural utilization. Trees of Delonix regia were felled and sampled at the base, middle and top and then sectioned to inner wood, middle wood, and outer wood for variation across the axial and radial directions. Hence, selected physical and mechanical properties as well as natural durability of D. regia along the radial and axial directions were examined. Obtained data were analyzed using analysis of variance (ANOVA) at α0.05. There was no significant difference in the Moisture content (MC) of the wood but specific gravity (SG) decreased from base to top ranging from 0.35-0.44. Water absorption, volumetric swelling, and volumetric shrinkage range from 46.18-51.86%, 2.57-4.02%, and 2.26-3.96% respectively along the axial plane. The weight loss for graveyard exposure and accelerated laboratory decay test ranged from 25.14-48.00% and 32.02-44.45% respectively. Modulus of Rupture and Modulus of Elasticity values range from 29.42-72.68 Nmm2 and 3,834.54-8,830.37 Nmm2 respectively. The SG values has confirmed the species as a medium density wood and values of other properties tested showed that the wood is dimensional stable and moderately resistance to fungi and termite. Hence, it could be used for light construction purposes such as furniture and other interior woodwork.