• Title/Summary/Keyword: Specific Mass Flow Rate

Search Result 89, Processing Time 0.02 seconds

An Experimental Study on the Bed Combustion Phenomena in MSW(Municipal Solid Waste) Incinerator (폐기물 소각로 베드에서의 연소현상 관찰을 위한 실험적 연구)

  • Min, Jee Hyun;Shin, Donghoon;Choi, Sangmin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.2
    • /
    • pp.159-165
    • /
    • 1999
  • Experimental studies have been performed to observe the basic phenomena of waste bed combustion in MSW incinerator. A reduced scale apparatus was utilized to simulate the combustion behavior in real plant with 1-dimensional transient behavior at the experimental setup, which uses wet cubic wood with ash content as simulated waste. LHV (lower heating value) of solid fuel, fuel particle size and flow rate of combustion air were taken as important parameters of the bed combustion. For the quantitative analysis, FPR (flame propagation rate), TBT (total burn-out time) and PBT (particle burn-out time) was defined. LHV represent the capability of heat release of the fuel, so that a higher LHV results in faster reaction rate of the fuel bed, which is shown by higher FPR. Fuel particle size is related with surface area per unit mass as well as heat and mass transfer coefficient. As the particle size increases the FPR decreases owing to decreasing specific surface area. Air injection supplies oxygen to the reaction zone. However oversupply of combustion air increases convection cooling of the bed and possibly extinguishes the flame.

Paraffin-based ramjet missile preliminary design

  • Rogerio L.V. Cruz;Carlos A.G. Veras;Olexiy Shynkarenko
    • Advances in aircraft and spacecraft science
    • /
    • v.10 no.4
    • /
    • pp.317-334
    • /
    • 2023
  • This paper presents a basic methodology and a set of numerical tools for the preliminary design of solid-fueled ramjet missiles. An elementary code determines the baseline system configuration comprised of warhead, guidance-control, and propulsion masses and geometries from specific correlations found in the literature. Then, the system is refined with the help of external and internal ballistics codes. Equations of motion are solved for the flight's ascending, cruising, and descending stages and the internal ballistic set of equations designs the ramjet engine based on liquefying fuels. The combined tools sized the booster and the ramjet sustainer engines for a long-range missile, intended to transport 200 kg of payload for more than 300 km range flying near 14,000 m altitude at Mach 3.0. The refined system configuration had 600 mm in diameter and 8,500 mm in length with overall mass of 2,128 kg and 890 kg/m3 density. Ramjet engine propellant mass fraction was estimated as 74%. Increased missile range can be attained with paraffin-polyethylene blend burning at near constant regression rate through primary air mass flow rate control and lateral 2-D air intakes.

Development of Neon Compressor for Reverse Brayton Cryocooler (극저온 냉동기용 냉매압축기의 개발)

  • Kim, Seungwoo;Park, Kicheol;Lee, Kiho;Kim, Kyungsoo;Kim, Dongkwon
    • 유체기계공업학회:학술대회논문집
    • /
    • 2002.12a
    • /
    • pp.237-243
    • /
    • 2002
  • A centrifugal compressor of 50HP for reverse brayton cryocooler using neon as a coolent has been developed. It has relatively low total-to-total pressure ratio but mass flow rate is very small and the voting gas, neon, has greater specific heat ratio than air. It was essential to have very high rotational speed of 100,000 RPM. The efficiency of compressor has great effects on overall system and the COP of cryocooler. To meet the design requirement of the compressor efficiency and to minimized the required rotational speed, highly efficiency impeller having low specific speed was designed. To maintain the overall system efficient high, gas bearing of bump type and high speed permanent magnet synchronus motor was developed and adopted. In this paper, design and performance prediction results of the compressor impeller is presented.

  • PDF

Dynamics of Coaxial Swirl Injectors in Combustion Environment (연소 조건하의 동축형 분사기의 동적 특성 고찰)

  • Seo Seonghyeon;Han Yeoung-Min;Lee Kwang-Jin;Kim Seung-Han;Seol Woo-Seok;Lee Soo-Yong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.10a
    • /
    • pp.282-287
    • /
    • 2004
  • Unielement combustion tests were conducted using coaxial bi-swirl injectors. Major experimental parameters were a recess length and a fuel-side swirl chamber. Combustion efficiency mainly depends on a mixing mechanism for the present coaxial swirl injectors. Low-frequency pressure excitations around 200Hz were observed for all injectors. However, dynamic behaviors considerably differ for an external and an internal mixing case controlled by a recess length. The internal mixing induces mixture to be biased at a specific frequency in a mass flow rate, which results in a relatively high amplitude of pressure fluctuations but results for the external mixing case show that fuel and oxidizer mixture flow carries more complicated, multiple wave characteristics due to broad mixing region as well as disintegration and merging phenomena of propellant films.

  • PDF

Fundamental design consideration for optimum performance in altitude test cell facility (고공시험설비의 전체 사양을 결정하는 시험부를 중심으로 설비개발시의 주요 고려사항)

  • Choi, Kyoung-Ho;Lee, Jung-Hyung;Owino, George;Lee, Dae-Soo
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.411-415
    • /
    • 2008
  • This paper presents on design factor considered in an altitude test cell facility to determine the best sizing to optimize exhaust diffuser pressure recovery and the exact cooling load required to be supplied under transient operation. Engine simulation was performed to analyse the exhaust gas temperature, exit mass flow rate, specific fuel consumption and exhaust velocity helpful in determining secondary mass air flow and the mixed air temperature entering the ejector. based on this, the amount of cooling load was deduced. It was found that improved pressure recovery reduces operational cost(air supply facility, cooling water).

  • PDF

Removal of RDX using Lab-scale Plug Flow Constructed Wetlands Planted with Miscanthus sacchariflorus (Maxim.) Benth (물억새를 식재한 플러그 흐름 습지에서의 RDX 제거동역학)

  • Lee, Ahreum;Kim, Bumjoon;Park, Jieun;Bae, Bumhan
    • Journal of Soil and Groundwater Environment
    • /
    • v.20 no.6
    • /
    • pp.85-94
    • /
    • 2015
  • RDX (hexahydro-1,3,5-trinitro-1,3,5-triazine) is the most important explosive contaminant, both in concentration and in frequency, at military shooting ranges in which green technologies such as phytoremediation or constructed wetlands are the best option for mitigation of explosive compounds discharge to the environment. A study was conducted with two identical lab-scale plug flow constructed wetlands planted with Amur silver grass to treat water artificially contaminated with 40 mg/L of toxic explosive compound, RDX. The reactor was inoculated with or without RDX degrading mixed culture to evaluate plant-microorganism interactions in RDX removal, transformation products distribution, and kinetic constants. RDX and its metabolites in water, plant, and sediment were analyzed by HPLC to determine mass balance and kinetic constants. After 30 days of operation, the reactor reached steady-state at which more than 99% of RDX was removed with or without the mixed culture inoculation. The major transformation product was TNX (Trinitroso-RDX) that comprised approximately 50% in the mass balance of both reactors. It was also the major compound in the plant root and shoot system. Acute toxicity analysis of the water samples showed more than 30% of toxicity reduction in the effluent than that of influent containing 40 mg/L of RDX. In the Amur silver grass mesocosm seeded with the mixed culture, the specific RDX removal rate, that is 1st order removal rate normalized to plant fresh weight, was estimated to be 0.84 kg−1 day−1 which is 16.7% higher than that in the planted only mesocosm. Therefore, the results of this study proved that Amur silver grass is an effective plant for RDX removal in constructed wetlands and the efficiency can be increased even more when applied with RDX degrading microbial consortia.

Simulation of oxygen mass transfer in fuel assemblies under flowing lead-bismuth eutectic

  • Feng, Wenpei;Zhang, Xue;Chen, Hongli
    • Nuclear Engineering and Technology
    • /
    • v.52 no.5
    • /
    • pp.908-917
    • /
    • 2020
  • Corrosion of structural materials presents a critical challenge in the use of lead-bismuth eutectic (LBE) as a nuclear coolant in an accelerator-driven system. By forming a protective layer on the steel surfaces, corrosion of steels in LBE cooled reactors can be mitigated. The amount of oxygen concentration required to create a continuous and stable oxide layer on steel surfaces is related to the oxidation process. So far, there is no oxidation experiment in fuel assemblies (FA), let alone specific oxidation detail information. This information can be, however, obtained by numerical simulation. In the present study, a new coupling method is developed to implement a coupling between the oxygen mass transfer model and the commercial computational fluid dynamics (CFD) software ANSYS-CFX. The coupling approach is verified. Using the coupling tool, we study the oxidation process of the FA and investigate the effects of different inlet parameters, such as temperature, flow rate on the mass transfer process.

Emission characteristics of diesel engine by mixing LPG (디젤기관의 LPG 혼합에 의한 오염배출물 저감특성)

  • 장영준;전충환;이춘우
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.15 no.2
    • /
    • pp.44-52
    • /
    • 1993
  • In this study, the characteristics of decreasing exhaust gas of diesel engine was examined in dual fuel method by using commertial LPG for automotive. LPG was supplied to engine intake port by fumigation method and flow rate was controlled by using the needle valve. LPG supply ratios were 0, 20, 30% of total fuel amount to be supplied to engine by mass base. We investigated the effect of LPG supply ratio on exhaust gas concentrations related to excess air ratio and engine load at 1600, 1800, 2000 rpm. Soot concentration decreased about 30% in proportion to the increase of the LPG supply ratio. NOx concentration decreased in proportion to the increase of the LPG than diesel only and the increase rate was higher at low engine load. BSFC(Brake specific fuel consumption) was lower in proportion to the increase of the LPG supply ratio at high engine load and to the decrease of LPG supply ratio at low engine load.

  • PDF

Analysis on the Thermal Performance of an Ammonia Unit Cooler (암모니아 유니트 쿨러의 열성능 해석)

  • 최재광;김무근;박병규
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.13 no.11
    • /
    • pp.1125-1133
    • /
    • 2001
  • Since the surface temperature of the evaporating tube in an ammonia unit cooled is lower than the dew point of atmosphere, the moisture in the atmosphere condenses and the frost grows on the tube. The frost of liquid film decreases the heat transfer rate. The reliable analysis of the heat transfer is required for the prediction of the optimal design of the ammonia unit cooler. For the specific commercial model, the performance was numerical1y estimated for the variation of operating condition and geometric configuration. It is found that there exists an optimum range for the parameters such as mass flow rate of air and refrigerant, humidity, refrigerant quality, fin pitch, the number of step, the number of rows and the pattern of refrigerant path.

  • PDF

A Simple and Sensitive High Performance Liquid Chromatography-Electrospray Ionization/Mass Spectrometry Method for the Quantification of Ethyl Pyruvate in Rat Plasma

  • Kim, Hyun-Ji;Kim, Seung-Woo;Lee, Ja-Kyeong;Yoon, Sung-Hwa
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.4
    • /
    • pp.1221-1227
    • /
    • 2011
  • Ethyl pyruvate (EP) is known as a scavenger of reactive oxygen species (ROS) in the body through its role in the donation of diketone groups to metals to form an EP-metal complex. In order to develop a method for the quantification of EP in biological media, a sensitive and specific, high-performance liquid chromatographyelectrospray ionization-mass spectrometry (HPLC-ESI/MS) method is used to determine the EP-alkali metal ion binding species. The analyte was separated on a ZORBOX SB-C8 ($3.5{\mu}m$, $30mm{\times}2.1mm$ I.D.) column and analyzed in selected ion monitoring (SIM) mode with a positive ESI interface using the m/z 255 $[2M + Na]^+$ ion. The method was validated over the concentration range of $0.5-60.0\;{\mu}g$/mL under 1/9 (v/v) of acetonitrile/methanol solvent system with flow rate 0.05 mL/min. The limit of quantification (LOQ) was $0.5{\mu}g$/mL.