• 제목/요약/키워드: Specific Fuel Consumption(SFC)

검색결과 24건 처리시간 0.035초

디젤기관에 있어서 에멀젼 연료가 배기배출물 특성에 미치는 영향 (Effects on the Characteristics of Exhaust Emissions by using Emulsion Fuel in Diesel Engine)

  • 임재근;조상곤;황상진;유동훈
    • 한국마린엔지니어링학회:학술대회논문집
    • /
    • 한국마린엔지니어링학회 2005년도 후기학술대회논문집
    • /
    • pp.9-10
    • /
    • 2005
  • A study on the combustion and exhaust emissions characteristics by using Emulsion Fuel in Diesel Engine is performed experimentally. In this paper, the experiments are performed at engine speed 1800rpm, emulsion fuel ratio is 0%, 5%, 10%, 15%, 20%, 25%, and main measured items are specific fuel consumption, NOx and Soot emissions etc. The obtained conclusions are as follows. 1) Specific fuel consumption increase maximum 19.8% at low load, but is not effected at full load. 2) NOx emissions decrease 30% in case of emulsion fuel ratio 25% at full load. 3) Soot emission decrease 58.9% in case of emulsion fuel ratio 25% at full load.

  • PDF

디젤기관에 있어서 에멀젼연료 연소특성에 미치는 영향 (Effects of Emulsified Fuel on Combustion Characteristics in a Diesel Engine)

  • 임재근;조상곤;황상진;유동훈
    • 동력기계공학회지
    • /
    • 제11권1호
    • /
    • pp.51-55
    • /
    • 2007
  • A study on combustion characteristics using emulsified fuel in a diesel engine were performed experimentally. In this paper, the experiments were performed at engine speed 1800rpm, emulsion ratios were 0%, 10%, 20%, and main measured items were specific fuel consumption, cylinder pressure, rate of pressure rise, rate of heat release etc. The obtained conclusions were as follows. 1) Specific fuel consumption increased maximum by 19.8% at low load, but was not affected at full load. 2) Rate of pressure rise and rate of heat release were about the same in the case of 10% and 20% of emulsion ratio. 3) Cylinder Pressure increased 9.6%, rate of pressure rise increased 53.4% in case of emulsion ratio 20% at full load. 4) Rate of heat release increased 72.4% in case of emulsion ratio 20% at full load.

  • PDF

소형 어선에서 육상용기관의 효율적인 이용방법에 대한 연구 (A Study on Efficient Methods of Using Land Engine in the Small Fishing Vessel)

  • 임재근;조상곤;황상진
    • 동력기계공학회지
    • /
    • 제9권3호
    • /
    • pp.5-9
    • /
    • 2005
  • A study on the performance and exhaust emissions of diesel engine with reducing exhaust gas temperature is performed experimentally. In this paper, experiments are performed at engine speed 2200rpm, 2600rpm and load 0%, 25%, 50%, 75% and 100% by test engine with F.W. cooler passing through exhaust gas. Main measured & analyzed parameters are exhaust gas temperature, specific fuel consumption, NOx and soot emissions etc. The obtained conclusions are as follows. (1) Specific fuel consumption is the least value at load 75% and it is decreased 1.5% after remodeling F.W. cooler. (2) NOx emission is the most value at load 100% and it is increased 30.1% after remodeling F.W. cooler. (3) Soot emission is the most value at load 100% and it is decreased 20.0% after remodeling F.W. cooler.

  • PDF

터빈엔진시험을 통한 제트연료 변경에 따른 엔진성능 변화 연구 (Study on the effect of Jet Fuel alteration on Turbine Engine Performances through Turbine Engine Test)

  • 김유일;민성기
    • 한국추진공학회지
    • /
    • 제15권2호
    • /
    • pp.23-28
    • /
    • 2011
  • 제트연료변경에 따른 엔진 운용 특성 변화를 살펴보기 위해 JP-8 연료와 JP-S 연료를 사용하여 소형터 보제트엔진의 지상시험 및 고도시험을 수행하였다. 비중이 18% 높은 JP-S 연료에 대한 연료조절시스템 특성은 동일 연료공급명령에 대한 실 연료공급량이 JP-8 연료보다 8% 많이 공급되었다. 시동특성은 연료조절시스템의 명령 대비 공급량의 차이로 인한 점화시점 및 엔진 회전수 가속율 등의 변화를 제외하고는 유사한 특성을 보였다. 정상상태 성능 특성은 순 추력의 일부 구간을 제외하고는 순 추력과 공기유량, 배기가스온도 등 대부분의 엔진 성능 변수가 1% 이내로 유사하였으나 연료소모량만은 연료의 발열량 차이로 인해 최대 5 %이상 차이가 발생하였다. 이를 동일 추력 대비 비 연료소모율로 비교할 때 지상시험에서는 약 1.1~2.6 %, 고공환경시험에서는 5 % 이상 차이가 발생하였다.

터빈엔진시험을 통한 제트연료 변경에 따른 엔진성능 변화 연구 (Study on the effect of Jet Fuel alteration on Turbine Engine Performances through Turbine Engine Test)

  • 김유일;민성기
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2010년도 제35회 추계학술대회논문집
    • /
    • pp.410-415
    • /
    • 2010
  • 제트연료변경에 따른 엔진 운용 특성 변화를 살펴보기 위해 JP-8 연료와 JP-S 연료를 사용하여 소형터보제트엔진의 지상시험 및 고도시험을 수행하였다. 비중이 18% 높은 JP-S 연료에 대한 연료조절 시스템 특성은 동일 연료공급명령에 대한 실 연료공급량이 JP-8 연료보다 8% 많이 공급되었다. 시동 특성은 연료조절시스템의 명령 대비 공급량의 차이로 인한 점화시점 및 엔진 회전수 가속율 등의 변화를 제외하고는 유사한 특성을 보였다. 정상상태 성능 특성은 순 추력의 일부 구간을 제외하고는 순추력과 공기유량, 배기가스온도 등 대부분의 엔진 성능 변수가 1% 이내로 유사하였으나 연료소모량만은 연료의 발열량 차이로 인해 최대 5 %이상 차이가 발생하였다. 이를 동일 추력 대비 비 연료소모율로 비교할 때 지상시험에서는 약 1.1~2.6 %, 고공환경시험에서는 5 % 이상 차이가 발생하였다.

  • PDF

디젤기관에 있어서 에멀젼 연료가 연소특성에 미치는 영향 (Effects on the Characteristics of Combustion by using Emulsion Fuel in Diesel Engine)

  • 임재근;조상곤;황상진;유동훈;서장원
    • 한국마린엔지니어링학회:학술대회논문집
    • /
    • 한국마린엔지니어링학회 2006년도 전기학술대회논문집
    • /
    • pp.41-42
    • /
    • 2006
  • A study on the combustion characteristics by using Emulsion Fuel in Diesel Engine is performed experimentally. In this paper, the experiments are performed at engine speed 1800rpm, emulsion fuel ratio is 0%, 10%, 20%, and main measured items are specific fuel consumption, pressure, ratio of pressure rise, rate of heat release etc. The obtained conclusions are as follows. 1) Specific fuel consumption increase maximum 19.8% at low load, but is not effected at full load. 2) Ratio of pressure rise and rate of heat release are about the same in the case of 10% and 20% of emulsion fuel ratio. 3) Cylinder Pressure increase 11.7%, ratio of pressure rise increase 60.4% in case of emulsion fuel ratio 20% at full load. 4) Rate of heat release increase 76.9% in case of emulsion fuel ratio 20% at full load.

  • PDF

디젤기관에 있어서 흡기습도 변화가 연소 특성과 배기배출물 특성에 미치는 영향 (Effects of Suction Air Humidity on the Combustion and Exhaust Emissions Characteristics in Diesel Engine)

  • 임재근;김동호
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제24권4호
    • /
    • pp.421-426
    • /
    • 2000
  • A study on the combustion and exhaust emissions characteristics of diesel engine with various suction air humidity is performed experimentally. In this paper, suction air humidity is changed from RH 50% to RH 90%, the experiments are performed at engine speed 1800rpm, and main measured parameters are cylinder pressure, fuel consumption rate, CO, HC, NOx and Soot emissions etc. Increase of suction air humidity from RH 50% to RH 90% does not effect specific fuel consumption, decreases maximum pressure in cylinder, ratio of maximum pressure rise and net heat release, and delays ignition timing. Also, that increases CO and HC emissions, decreases NOx emissions, but does not constant in changing tendency on emission.

  • PDF

선박용 디젤기관의 연료분사 시기가 배기배출물 특성에 미치는 영향 (Effects of Fuel Injection Timing on Exhaust Emissions Characteristics in Marine Diesel Engine)

  • 임재근;최순열
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제26권3호
    • /
    • pp.307-312
    • /
    • 2002
  • A study on the exhaust emissions of marine diesel engine with various fuel injection timing is performed experimentally .In this paper, fuel injection timing is changed from BTDC $14^{\circ}$ to $20^{\circ}$ by $2^{\circ}$ intervals, the experiments are performed at engine speed 1800rpm and from load 0% to 100% by 25% intervals, and main measured parameters are fuel consumption rate, Soot, NOx, HC and CO emissions etc. The obtained conclusions are as follows (1) Specific fuel consumption is indicated the least value at BTDC $18^{\circ}$ of fuel injection timing and it is increased in case of leading the injection timing. (2) Soot emission is decreased in case of leading fuel injection timing and it is increased in the form of convex downwards with increasing the load. (3) NOx emission is increased in case of leading fuel injection timing and it is increased in the form of straight line nearly with increasing the load. (4) HC and CO emissions are decreased in case of leading fuel injection timing and they are changed in the form of convex downwards with increasing the load.

디젤기관의 연료분사시기가 배기배출물 특성에 미치는 영향 (Effects of Fuel Injection Timing on Exhaust Emissions Characteristics in Diesel Engine)

  • 임재근;최순열
    • 한국마린엔지니어링학회:학술대회논문집
    • /
    • 한국마린엔지니어링학회 2001년도 추계학술대회 논문집(Proceeding of the KOSME 2001 Autumn Annual Meeting)
    • /
    • pp.50-56
    • /
    • 2001
  • A study on the exhaust emissions of diesel engine with various fuel injection timing is peformed experimentally. In this paper, fuel injection timing is changed from BTDC $14^{\circ}$ to $20^{\circ}$ by $2^{\circ}$ intervals, the experiments are performed at engine speed 1800rpm and from load 25% to 100% by 25% intervals, and main measured parameters are fuel consumption rate, Soot, NOx. HC and CO emissions etc. The obtained conclusions are as follows (1) Specific fuel consumption is indicated the least value at BTDC $18^{\circ}$ of fuel injection timing and it is increased in case of leading the injection timing. (2) Soot emission is decreased in case of leading fuel injection timing and it is increased in the form of convex downwards with increasing the load. (3) $NO_x$ emission is increased in case of leading fuel injection timing and it is increased in the form of straight line nearly with increasing the load. (4) HC and CO emissions are decreased in case of leading fuel injection timing and they are changed in the form of convex downwards with increasing the load.

  • PDF

디젤기관에서 바이오디젤 연료가 배기배출물 특성에 미치는 영향(대두유를 중심으로) (Effects of Biodiesel Fuel on Exhaust Emission Characteristics in Diesel Engine(Using Soybean Oil))

  • 임재근;최순열;조상곤
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제32권1호
    • /
    • pp.27-32
    • /
    • 2008
  • Recently, we have a lot of interest in alternative fuels to provide energy independence from oil producing country and to reduce exhaust emissions for air pollution prevention. Biodiesel, which can be generated from natural renewable sources such as new or used vegetable oils or animal fats, may be used as fuel in diesel engine of compression ignition engine. In this paper, the test results on specific fuel consumption and exhaust emissions of neat diesel oil and biodiesel blends(10 vol.% biodiesel and 20 vol.% biodiesel) were presented using four stroke, direct injection diesel engine, especially this biodisel was produced from soybean oil at our laboratory. This study showed that Soot and CO emission were decreased as the blending ratios of biodiesel to diesel oil increased, on the other hand NOx emission was slightly increased because of the oxygen content in biodiesel. Also, the biodiesel blends yielded slightly higher specific fuel consumption than that of diesel oil because of lower heating value of biodiesel.