• Title/Summary/Keyword: Species-specific PCR

Search Result 650, Processing Time 0.038 seconds

Detection and Differentiation of Intentional and Unintentional Mixture in Raw Meats Using Real-time PCR (Real-time PCR을 이용한 식육원료의 의도적, 비의도적 혼입 판별법 개발)

  • Kim, Kyu-Heon;Kim, Mi-Ra;Park, Young-Eun;Kim, Yong-Sang;Lee, Ho-Yeon;Park, Yong-Chjun;Kim, Sang Yub;Choi, Jang Duck;Jang, Young-Mi
    • Journal of Food Hygiene and Safety
    • /
    • v.29 no.4
    • /
    • pp.340-346
    • /
    • 2014
  • In this study, the detection method was developed using real-time PCR to distinguish 4 species (bovine, porcine, horse, and chicken) of raw meats. The genes for distinction of species about meats targeted at 12S rRNA and 16S rRNA parts in mitochondrial DNA. Probes were designed to have a 5' FAM and a TAMRA at the 3' end. This study is to develop 4 species-specific primer and probes about raw materials and real-time PCR on 10 strains to observe the products of non-specific signal for similar species. As a result, any non-specific signal were not detected among each other. Real-time PCR method was developed for quantitation and identification of intentional and unintentional mixture in ground mixed meat (The difference of $C_T$ value between intentional mixture and 100% meat: $${\leq_-}$$ cycles, The difference of $C_T$ value between unintentional mixture and 100% meat: $${\geq_-}$$ cycles). The detection and differentiation of intentional and unintentional mixture in this study would be applied to food safety management for eradication of adulterated food distribution and protection of consumer's right.

Identification of Deer Antler Species Using Sequence Analysis and PCR-RFLP of Mitochondrial DNA (사슴 미토콘드리아 DNA의 염기서열 및 PCR-RFLP분석에 의한 녹용의 종 감별)

  • Shin, Ki-Hyun;Shin, Sung-Chul;Chung, Ku-Young;Chung, Eui-Ryong
    • Food Science of Animal Resources
    • /
    • v.28 no.3
    • /
    • pp.276-282
    • /
    • 2008
  • It is estimated that over 80% of deer antlers produced in the world are consumed in Korea. However, mislabeling or fraudulent replacement of costly antlers with cheaper ones is one of the most common problems in the domestic antler market. Therefore, there is a great need for the development of technology to identify species of antlers. This study was carried out to develop an accurate and reliable method for the identification and authentication of species or subspecies of antlers using DNA sequence analysis and comparison of mitochondrial cytochrome band D-loop region genes among antlers of five deer species, Cervus elaphus sibericus, Cervus elaphus canadensis, Cervus nippon, Cervus elaphus bactrianus and Rangifer tarandus. A variable region of cytochrome band D-loop genes was amplified using PCR with specifically designed primers and sequenced directly. The cytochrome band D-loop region genes showed different DNA sequences between the species of antlers and thus it is possible to differentiate between species on the basis of sequence variation. To distinguish between reindeer (Rangifer tarandus) antlers and other deer antlers, PCR amplicons of the cytochrome b gene were digested with the restriction enzymes NlaIV and TaqI, respectively, which generates a species-specific DNA profile of the reindeer. In addition, samples of 32 sliced antlers labeled Cervus elaphus sibericus from commercial markets were collected randomly and the mt DNA D-loop region of these antler samples was sequenced. Among the antler samples investigated, only 62.5% were from Cervus elaphus sibericus, and others were from Cervus elaphus bactrianus (25.0%), elk (Cervus elaphus canadensis) and reindeer (Rangifer tarandus). Our results suggest that DNA sequencing of mt DNA and PCR-RFLP methods using NlaIV and TaqI enzymes are useful for the identification and discrimination of deer antler species by routine analysis.

Sensitive and Pathovar-Specific Detection of Xanthormonas campestris pv. glycines by DNA Hybridization and Polymerase Chain Reaction Analysis

  • Changsik Oh;Sunggi Heu;Park, Yong-Chul
    • The Plant Pathology Journal
    • /
    • v.15 no.1
    • /
    • pp.57-61
    • /
    • 1999
  • Xanthomonas campestris pv. glycines causes bacterial pustule disease on susceptible soybean leaves and produces a bacteriocin, named glycinecinA, against most xanthomonads including Xanthomonas campestris pv. vesicatoria. One of the 5 isolated DNA regions responsible for bacteriocin production, a 1.7 kb DNA region for the glycinecinA gene, was used as a probe to detect the presence of the homolog DNA in other bacterial strains. Among 55 bacterial strains tested, only X. campestris pv. glycines showed the positive signal with glycinecinA DNA. Two oligomers, heu2 and heu4, derived from a glycinecinA DNA were used to carry out the polymerase chain reaction (PCR) analysis with chromosomal DNA from 55 different bacterial strains including 24 different strains of X. campestris pv. glycines, 9 different pathovars of xanthomonads, and other 22 bacterial strains of different genus and species. By separation of the PCR products on agarose gel, a 0.86 kb DNA fragment was specifically detected when X. campestris pv. glycines was present in the amplification assay. The 0.86 kb fragment was not amplified when DNA from other bacteria was used for the assay. Southern analysis with glycinecinA DNA showed that the PCR signal was obtained with X. campestris pv. glycines isolates from various geographic regions and soybean cultivars. Therefore, the 1.7 kb DNA region for the glycinecinA gene can be used for the pathovar-specific probe for the DNA hybridization and the primers heu2 and heu4 can be used for the pathovar-specific primers for the PCR analysis to detect X. campestris pv. glycines.

  • PDF

Development of Multiplex PCR Assay for Identification of Eight Species from Meats in Korea (국내에서 유통되는 8종의 식육감별을 위한 multiplex PCR법 개발)

  • Heo, Eun-Jeong;Ko, Eun-Kyung;Yoon, Hyang-Jin;Kim, Yeon-Hwa;Kim, Young-Jo;Park, Hyun-Jung;Wee, Sung-Hwan;Moon, Jin-San
    • Journal of Food Hygiene and Safety
    • /
    • v.31 no.1
    • /
    • pp.28-35
    • /
    • 2016
  • Species identification of animal tissues in meat products is an important issue to protect the consumer from illegal and/or undesirable adulteration; for economic, religious and health reasons. In this reason, accurate analytical methods are needed for the labeling of meat products with requiring simple and fast procedure. Recently, applications of PCR in food analysis have been increased because of their simplicity, specificity and sensitivity. Therefore, in this study, a multiplex PCR assay was developed for the simultaneous identification of eight species of cow, pig, chicken, duck, goat, sheep, horse and turkey from raw meats. The primers were designed in different regions of mitochondrial 16S RNA after alignment of the available sequences in the GenBank database. Two multiplex primer sets were designed as Set 1 (cow, pig, chicken, duck) and Set 2 (goat, sheep, horse, turkey), respectively. Total 274 samples from cow (n = 55), pig (n = 30), chicken (n=30), and duck (n = 30), goat (n = 40), sheep (n = 33), horse (n = 41), and turkey (n = 15) were tested. The primers generated specific fragments of 94, 192, 279, 477 bp (pig, chicken, cow, duck), 670, 271, 152, 469 bp (goat, sheep, horse, turkey) lengths for eight species, respectively. The animal species specificity was 100% in all eight samples in the multiplex PCR assay. The detection limit of the multiplex PCR assay showed from 100 fg to 1 pg of template DNA from extracted from raw meats. When applying multiplex PCR assays to sample from pork/beef and pork/chicken, beef/chicken tested raw mixed meats and heat-treated ($83^{\circ}C$ for 30min, $100^{\circ}C$ for 20min, and $121^{\circ}C$ for 10min) mixtures, detection limit was 0.1% level beef, pork and pork in beef and chicken in pork and 1.0% level pork in chicken. This study suggest that the developed multiplex PCR assay can be used for rapid and simultaneous species identification of cow, pig, chicken, duck, goat, sheep, horse and turkey from meats.

Genetic Similarity and Difference of Marsh Clam (Corbicula leana) Obtained by RAPD-PCR

  • Yoon, Jong-Man;Park, Hwan-ha;Choe, Sun-Nam
    • Proceedings of the Korean Society of Fisheries Technology Conference
    • /
    • 2002.05a
    • /
    • pp.279-280
    • /
    • 2002
  • Genomic DNA from the muscle of marsh clam (Corbicula leana) from Gochang was extracted in order to identify genetic differences and similarity by randomly amplified polymorphic DNAs-polymerase chain reaction. 3.28 of the 23.0 polymorphic bands per lane were found to be polymorphic in marsh clam. Also, about 4.34% of total polymorphic bands were either specific to marsh clam. The major common bands of 0.28 kb generated by primer OPB-15 (GGAGGGTGTT) were present in every individuals, respectively, which were polymorphic. This common bands which present in every individuals should be diagnostic of specific strains, species and/or their relatedness. Primer OPB-19 (ACCCCCGAAG) produced the highest number of specific bands, which was 12. The specific minor band of 0.07 kb was present in lane 22, which were polymorphic. Especially, only a specific band (1.35 kb) identifying individuals was observed in lane 22.

  • PDF

Genetic Similarity and Difference of Marsh Clam (Corbicula leana) Obtained by RAPD-PCR

  • Yoon, Jong-Man;Park, Kwan-Ha;Choe, Sun-Nam
    • Proceedings of the Korean Aquaculture Society Conference
    • /
    • 2002.08a
    • /
    • pp.171-172
    • /
    • 2002
  • Genomic DNA from the muscle of marsh clam (Corbicula leana)from Gochang was extrected in order to identify genetic differences and similarity by randomly amplified polymorphic DNAs-polymerase chain reaction. 3.28 of the 23.0 polymorphic bands per lane were found to be polymorphic in marsh clam. Also, about 4.34% of total polymorphic bands were either specific to marsh clam. The major common bands of 0.28 kb generated by primer OPB-15 (GGAGGGTGTT) were present in every individuals, respectively, which were polymorphic. This common bands which present in every individuals should be diagnostic of specific strains, species and-or their relatedness. Primer OPB-19 (ACCCCCGAAG) produced the highest number of specific bands, which was 12. The specific minor band of 0.07 kb was present in lane 22, which were polymorphic. Especially, only a specific band (1.35kg) identifying individuals was observed in lane 22.

  • PDF

Genetic Diversity and Molecular Markers in Introduced and Thai Native Apple Snails (Pomacea and Pila)

  • Thaewnon-Ngiw, Bungorn;Klinbunga, Sirawut;Phanwichien, Kantimanee;Sangduen, Nitsri;Lauhachinda, Nitaya;Menasveta, Piamsak
    • BMB Reports
    • /
    • v.37 no.4
    • /
    • pp.493-502
    • /
    • 2004
  • The genetic diversity and species-diagnostic markers in the introduced apple snail, Pomacea canaliculata and in the native Thai apple snails; Pila ampullacea, P. angelica, P. pesmei, and P. polita, were investigated by restriction analysis of COI and are reported for the first time. Twenty-one composite haplotypes showing non-overlapping distributions among species were found. Genetic heterogeneity analysis indicated significant differences between species (P < 0.0001) and within P. pesmei (P < 0.0001) and P. angelica (P < 0.0004). No such heterogeneity was observed in Pomacea canaliculata (P > 0.0036 as modified by the Bonferroni procedure), P. ampullacea (P = 0.0824-1.000) and P. polita (P = 1.0000). A neighbor-joining tree based on genetic distance between pairs of composite haplotypes differentiated all species and indicated that P. angelica and P. pesmei are closely related phylogenetically. In addition, the 16S rDNA of these species was cloned and sequenced. A species-specific PCR for P. canaliculata was successfully developed with a sensitivity of detection of approximately 50 pg of the target DNA template. The amplification of genomic DNA (50 pg and 25 ng) isolated from the fertilized eggs, and juveniles (1, 7, and 15 d after hatching) of Pomacea canaliculata was also successful, and suggested that Pomacea canaliculata and Pila species can be discriminated from the early stages of development.

Development of Detection Method for Oilfish (Ruvettus pretiosus and Lepidocybirium flavobrunneum) as a Food Materials not Usable in Foods (식품원료로 사용금지 대상인 기름치 (기름갈치꼬치 및 흑갈치꼬치) 판별법 개발)

  • Park, Yong-Chjun;Kim, Mi-Ra;Jung, Yong-Hyun;Shin, Joon-Ho;Kim, Kyu-Heon;Lee, Jae-Hwang;Cho, Tae-Yong;Lee, Hwa-Jung;Lee, Sang-Jae;Han, Sang-Bae
    • Journal of Food Hygiene and Safety
    • /
    • v.28 no.1
    • /
    • pp.50-55
    • /
    • 2013
  • Since 1 June 2012, it is prohibited to sell oilfish as a food material but there are still many illegal cases of selling oilfish as if it is tuna or grilled Patagonian toothfish. So it is absolutely crucial to construct the system to distinguish the real food material from oilfish. There are two sorts of oil fish called Ruvettus pretiosus and Lepidocybirium flavobrunneum involved in Percifomes order and Gempylidae class. 16S DNA gene region in mitochondria was selected to design the specific primers. For design species-specific primer, the theoretical experiment were performed for the sequences of R. pretiosus, L. flavobrunneum, Thunnus thynnus, Thunnus albacores, Makaira mitsukurii and Xiphias gladius, registered at the Gene bank from the National Centre for Biotechnology Information, using BioEdit 7.0.9.0. program. Through the analysis of the result from experiments, it was possible to design the 4 kinds of primers to distinguish R. pretiosus and L. flavobrunneum. As a comparison group, 3 kinds of tuna and 4 kinds of billfishes were selected and experimental verification was performed. As a result, for R. pretiosus and L. flavobrunneum, R.P-16S-006-F/R.P-16S-008-R and L.F-16S-004-F/L.F-16S-006-R primers were selected eventually and PCR condition was established. In addition, 178bp and 238bp of PCR products were confirmed from the established condition and non-specific band was not amplified among similar species. Therefore, the species-specific primers developed in this study would be very useful and used in various ways such as internet shopping mall and illegal distributions with fast and scientific results.

Rapid Identification of Lactobacillus and Bifidobacterium in Probiotic Products Using Multiplex PCR

  • Sul, Su-Yeon;Kim, Hyun-Joong;Kim, Tae-Woon;Kim, Hae-Yeong
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.3
    • /
    • pp.490-495
    • /
    • 2007
  • Lactic acid bacteria (LAB) are beneficial for the gastrointestinal tract and reinforce immunity in human health. Recently, many functional products using the lactic acid bacteria have been developed. Among these LAB, Lactobacillus acidophilus, Lactobacillus rhamnosus, Bifidobacterium longum, and Bifidobacterium bifidum are frequently used for probiotic products. In order to monitor these LAB in commercial probiotic products, a multiplex PCR method was developed. We designed four species-specific primer pairs for multiplex PCR from the 16S rRNA, 16S-23S rRNA intergenic spacer region, and 23S rRNA genes in Lactobacillus acidophilus, Lactobacillus rhamnosus, Bifidobacterium longum, and Bifidobacterium bifidum. Using these primer pairs, 4 different LAB were detected with high specificity in functional foods. We suggest that the multiplex PCR method developed in this study would be an efficient tool for simple, rapid, and reliable identification of LAB used as probiotic strains.

DNA Analysis of mtDNA COI Gene in the Sharp-toothed Eel (Muraenesox cinereus Forskal) from Yeosu, Jinhae, Jeju, Goseoung, Jangheung and Haenam Populations in Korea Using PCR-aided RFLP

  • Oh, Taeg-Yun;Jeong, Sun-Beom;Cho, Eun-Seob
    • Journal of Environmental Science International
    • /
    • v.20 no.4
    • /
    • pp.551-554
    • /
    • 2011
  • The production of the sharp-toothed eel by commercial catch off waters of Korea is annually declined after 1978. This study was carried out to obtain the stock management of the sharp-toothed eel using the PCR-aided RFLP method. The mtDNA COI gene was amplified using species-specific primers and PCR product was observed to 700 bp. Amplified DNA fragments were treated with six kinds of restriction enzymes (BaeHI, EcoRI, PstI, Ksp22, HinfI and HaeIII). The treatment of HaeIII showed a distinct PCR product between Yeosu/Jinhae/Jeju/Goseoung and Jangheung/Haenam populations that were observed from 300 to 400 bp in reference to 100 bp molecular marker. However, DNA fragment within populations had an identical pattern. The phylogenetic homology is 82% between two populations inferred from RFLP PCR product pattern using NTsysPC ver. 2.1. The use of HaeIII plays an important role in discriminating populations. It is thought that adults after over-wintering in the southern part of Jeju migrate to the Yeosu, Jinhae and Goseoung regions to spawn instead of to southwestern waters. Individuals within populations showed a relatively active genetic mixing and migration regardless of geography. However, the genetic ancestor of Jangheung and Haenam populations is appeared to be more adjacent to China or Japan than Jeju.