• 제목/요약/키워드: Species-specific PCR

검색결과 648건 처리시간 0.029초

Differentiation of three scuticociliatosis causing species in olive flounder (Paralichthys olivaceus) by multiplex PCR

  • Kim, Sung Mi;Lee, Eun Hye;Kim, Ki Hong
    • 한국어병학회지
    • /
    • 제17권2호
    • /
    • pp.145-149
    • /
    • 2004
  • The definitive identification of ciliate species by morphological characteristics relies on time-consuming and laborious staining techniques. Therefore, in this study, we discriminated 3 scuticociliatosis causing species - Pseudocohnilembus persalinus, Uronema marinum and Philasterides dicentrarchi - in cultured olive flounder by multiplex PCR. The multiplex PCR based on the species-specific amplification of small subunit ribosomal RNA (SS rRNA) gene sequence enabled us to distinguish the 3 scuticociliate species in a simple and rapid manner, even in the sample containing the three species simultaneously. These data suggest that the multiplex PCR strategy would make it possible to avoid the cumbersome and time-consuming procedures of morphological analysis for the definitive identification of scuticociliates.

A New Approach Using the SYBR Green-Based Real-Time PCR Method for Detection of Soft Rot Pectobacterium odoriferum Associated with Kimchi Cabbage

  • Yong Ju, Jin;Dawon, Jo;Soon-Wo, Kwon;Samnyu, Jee;Jeong-Seon, Kim;Jegadeesh, Raman;Soo-Jin, Kim
    • The Plant Pathology Journal
    • /
    • 제38권6호
    • /
    • pp.656-664
    • /
    • 2022
  • Pectobacterium odoriferum is the primary causative agent in Kimchi cabbage soft-rot diseases. The pathogenic bacteria Pectobacterium genera are responsible for significant yield losses in crops. However, P. odoriferum shares a vast range of hosts with P. carotovorum, P. versatile, and P. brasiliense, and has similar biochemical, phenotypic, and genetic characteristics to these species. Therefore, it is essential to develop a P. odoriferumspecific diagnostic method for soft-rot disease because of the complicated diagnostic process and management as described above. Therefore, in this study, to select P. odoriferum-specific genes, species-specific genes were selected using the data of the P. odoriferum JK2.1 whole genome and similar bacterial species registered with NCBI. Thereafter, the specificity of the selected gene was tested through blast analysis. We identified novel species-specific genes to detect and quantify targeted P. odoriferum and designed specific primer sets targeting HAD family hydrolases. It was confirmed that the selected primer set formed a specific amplicon of 360 bp only in the DNA of P. odoriferum using 29 Pectobacterium species and related species. Furthermore, the population density of P. odoriferum can be estimated without genomic DNA extraction through SYBR Green-based real-time quantitative PCR using a primer set in plants. As a result, the newly developed diagnostic method enables rapid and accurate diagnosis and continuous monitoring of soft-rot disease in Kimchi cabbage without additional procedures from the plant tissue.

Development of strain-specific polymerase chain reaction primers to detect Fusobacterium hwasookii strains

  • Lim, Yun Kyong;Kook, Joong-Ki
    • International Journal of Oral Biology
    • /
    • 제46권4호
    • /
    • pp.155-159
    • /
    • 2021
  • This study aimed to develop strain-specific polymerase chain reaction (PCR) primers to detect Fusobacterium hwasookii KCOM 1249T, F. hwasookii KCOM 1253, F. hwasookii KCOM 1256, F. hwasookii KCOM 1258, and F. hwasookii KCOM 1268 on the basis of nucleotide sequences of a gene specific to each strain. The unique genes for each F. hwasookii strain were determined on the basis of their genome sequences using Roary. The strain-specific PCR primers based on each strain-specific gene were designed using PrimerSelect. The specificity of each PCR primer was determined using the genomic DNA of the 5 F. hwasookii strains and 25 strains of oral bacterial species. The detection limit and sensitivity of each strain-specific PCR primer pair were determined using the genomic DNA of each target strain. The results showed that the strain-specific PCR primers correspond to F. hwasookii KCOM 1249T, F. hwasookii KCOM 1253, F. hwasookii KCOM 1258, F. hwasookii KCOM 1256/F. nucleatum subsp. polymorphum KCOM 1260, or F. hwasookii KCOM 1268/Fusobacterium sp. oral taxon 203 were developed. The detection limits of these strain-specific PCR primers ranged from 0.2 to 2 ng of genomic DNA for each target strain. The results suggest that these strain-specific PCR primers are valuable in quality control for detecting specific F. hwasookii strains.

종 특이 프라이머를 이용한 동물성 식품원료의 진위 판별법 개발 (Development of Species-Specific PCR to Determine the Animal Raw Material)

  • 김규헌;이호연;김용상;김미라;정유경;이재황;장혜숙;박용춘;김상엽;최장덕;장영미
    • 한국식품위생안전성학회지
    • /
    • 제29권4호
    • /
    • pp.347-355
    • /
    • 2014
  • 본 연구에서는 식품 중 동물성 사용원료의 진위 판별을 위하여 분자생물학적 기법을 이용한 시험법을 개발하였다. 동물성 식품원료의 종 판별을 위한 유전자로는 미토콘드리아 DNA에 존재하는 COI, Cytb, 및 16S rRNA 유전자를 대상으로 하였으며, 가공식품에 적용하기 위하여 PCR 산물의 크기는 200 bp 내외가 되도록 종 특이 프라이머를 설계하였다. 대상종으로는 가축류 2종, 가금류 6종, 민물어류 2종, 해양어류 13종 및 갑각류 1종, 총 24종을 선정하였으며 종 특이 프라이머를 이용하여 예상되는 PCR 산물의 생성 유무를 확인하였다. PCR을 수행한 결과 토끼, 여우, 꿩, 집비둘기, 멧비둘기, 메추리, 참새, 제비, 메기, 쏘가리, 날치, 열빙어, 청어, 까나리, 멸치, 참조기, 넙치, 조피볼락, 홍어, 가오리, 말쥐치, 농어, 성게 및 바닷가재에 대하여 각각 156, 204, 152, 160, 113, 163, 167, 152, 165, 121, 136, 151, 178, 178, 146, 188, 177, 166, 179, 218, 188, 185, 127 및 172 bp에서 PCR 증폭 산물을 확인하였다. 그리고 프라이머 별로 비교종에서는 비특이적 PCR 산물(non-specific PCR product)은 생성되지 않았다. 본 연구에서 개발된 유전자 분석법을 이용하여 동물성 식품원료가 사용된 식품 원료 및 가공식품의 진위 판별에 활용이 가능할 것이며, 불량식품 근절에 크게 기여할 것으로 기대된다.

Identification of Actinobacillus actinomycetemcomitans Using Species-Specific 16S rDNA Primers

  • Kim Su Gwan;Kim Soo Heung;Kim Mi Kwang;Kim Hwa Sook;Kook Joong Ki
    • Journal of Microbiology
    • /
    • 제43권2호
    • /
    • pp.209-212
    • /
    • 2005
  • The purpose of this study was to develop species-specific PCR primers for use in the identification and detection of Actinobacillus actinomycetemcomitans. These primers target variable regions of the 168 ribosomal RNA coding gene (rDNA). We assessed the specificity of the primers against 9 A. actinomycetemcomitans strains and 11 strains (3 species) of the Haemophilus genus. Primer sensitivity was determined by testing serial dilutions of the purified genomic DNAs of A. actinomycetemcomitans ATCC$ 33384^$T Our obtained data revealed that we had obtained species-specific amplicons for all of the tested A. actinomycetemcomitans strains, and that none of these amplicons occurred in any of the other species. Our PCR protocol proved able to detect as little as 4 fg of A. actinomycetemcomitans chromosomal DNA. Our findings suggest that these PCR primers are incredibly sensitive, and should prove suitable for application in epidemiological studies, as well as the diagnosis and monitoring of periodontal pathogens after treatment for periodontitis.

A Reliable "Direct from Field" PCR Method for Identification of Mycorrhizal Fungi from Associated Roots

  • Kuhnann, Christoph;Kim, Seak-Jin;Lee, Sang-Sun;Harms, Carsten
    • Mycobiology
    • /
    • 제31권4호
    • /
    • pp.196-199
    • /
    • 2003
  • A very reliable and specific method for the identification of fungi in ectotrophic mycorrhizal symbiosis was developed using a specific PCR assay based on the amplification of the ITS1 region. To obtain specific data, an ITS-diagnostic assay was carried out that reveals genera and species specific sequences. Here, an application of one method is presented, which covers the identification of pure mycelia, basidiocarps as well as mixed samples such as ectomycorrhizal roots that were mingled with remains of the host plant. For this purpose a protocol was established that allowed the extraction of DNA from single mycorrhizal roots. In order to perform a specific ITS analysis we generated a new ITS-primer(ITS8) by a multiple alignment of five different genera and species of mycorrhizal fungi. The utilization of ITS1 and ITS8 resulted in specific PCR amplicons, which were characterized by sequencing without purification steps, even when the template DNA was associated with roots.

Genetic Differences and DNA Polymorphisms between the Fleshy Prawn Fenneropenaeus chinensis and Chinese Ditch Prawn Palaemon gravieri

  • Yoon Jong-Man;Kim Jong-Yeon
    • Fisheries and Aquatic Sciences
    • /
    • 제8권3호
    • /
    • pp.151-160
    • /
    • 2005
  • Genomic DNA samples isolated from Fenneropenaeus chinensis (fleshy prawn; FP) and Palaemon gravieri (Chinese ditch prawn; CDP) collected in the West Sea, off the Korean Peninsula, at Buan, were PCR-amplified repeatedly. The sizes of the DNA fragments generated by seven different primers varied from 50 bp to 1,600 bp. We identified 358 fragments for the FP species and 301 fragments for the CDP species. There were 18 polymorphic fragments (5.03$\%$) for the FP species and 12 (3.99$\%$) for the CDP species. In total, 66 common fragments (average of 9.4 fragments per primer) were observed for the FP species and 44 fragments (average of 6.3 fragments per primer) were observed for the CDP species. The numbers of specific fragments seen for the FP species and CDP species were 38 and 47, respectively. The complexity of the banding patterns varied dramatically between the primers and the two species. In the FP species, a specific fragment of approximately 1,200 bp generated by primer OPB-04 exhibited inter-individual-specific characteristics that were indicative of DNA polymorphisms. Moreover, in the CDP species, a major fragment of approximately 550 bp generated by primer OPB-20 was found to be specific for the CDP. The average bandsharing value between the two prawn species was 0.421$\pm$0.006, and ranged from 0.230 to 0.611. The dendrogram obtained using the data from the seven primers indicated seven genetic clusters: cluster 1, FLESHY 01, 02, 03, and 04; cluster 2, FLESHY 05, 06, and 07; cluster 3, FLESHY 08, 09, 10, and 11; cluster 4, DITCH 13, 14, 16, and 18; cluster 5, DITCH 12, 15, and 17; cluster 6, DITCH 19, 20, and 21; and cluster 7, DITCH 22. The genetic distance between the two prawn species ranged from 0.071 to 0.642. Thus, RAPD-PCR analysis revealed a significant genetic distance between the two prawn species. Using various arbitrary primers, RAPD-PCR may be applied to identify specific/polymorphic markers that are particular to a species and geographic population, and to define genetic diversity, polymorphisms, and similarities among shrimp species.

A 16S rDNA polymerase chain reaction assay to detect Mycoplasma pulmonis in rats model

  • Hong, Sunhwa;Lee, Hyun-A;Choi, Yeon-Shik;Chung, Yungho;Kim, Okjin
    • 한국동물위생학회지
    • /
    • 제38권2호
    • /
    • pp.101-106
    • /
    • 2015
  • Murine mycoplasmosis, caused by Mycoplasma (M.) pulmonis, is a prominent disease in rodent animals. The aim of this study was to develop a sensitive and specific PCR assay to detect M. pulmonis in animals and to assess the suitability of this assay for the detection of mycoplasmal infection in rats experimentally infected with M. pulmonis. A new PCR assay using the M. pulmonis-specific primer pairs MPul-F and MPul-R was developed. The primers and probe for the assay were designed from regions in the 16S rRNA gene that are unique to M. pulmonis. The novel PCR assay was very specific and sensitive for M. pulmonis, detecting the equivalent of 5 pg of target template DNA. It detected only M. pulmonis and no other Mycoplasma species or other bacterial species. The newly developed PCR assay also effectively detected M. pulmonis infection in rats. These results suggest that this PCR assay using M. pulmonis-specific primer pairs of MPul-F and MPul-R will be useful and effective for monitoring M. pulmonis infection in animals.

Detection of Meat Origin (Species) Using Polymerase Chain Reaction

  • Park, Yong Hyun;Uzzaman, Md. Rasel;Park, Jeong-Woon;Kim, Sang-Wook;Lee, Jun Heon;Kim, Kwan-Suk
    • 한국축산식품학회지
    • /
    • 제33권6호
    • /
    • pp.696-700
    • /
    • 2013
  • A quick and reliable method for identifying meat origin is developed to ensure species origin of livestock products for consumers. The present study examined the identification of meat sources (duck, chicken, goat, deer, pig, cattle, sheep, and horse) using PCR by exploiting the mitochondrial 12S rRNA and mitochondrial cytochrome b genes. Species-specific primers were designed for some or all mitochondrial 12S rRNA nucleotide sequences to identify meat samples from duck, chicken, goat, and deer. Mitochondrial cytochrome b genes from pig, cattle, sheep, and horse were used to construct species-specific primers, which were used to amplify DNA from different meat samples. Primer sets developed in this study were found to be superior for detecting meat origin when compared to other available methods, for which the discrimination of meat origin was not equally applicable in some cases. Our new development of species-specific primer sets could be multiplexed in a single PCR reaction to significantly reduce the time and labor required for determining meat samples of unknown origin from the 8 species. Therefore, the technique developed in this study can be used efficiently to trace the meat origin in a commercial venture and help consumers to preserve their rights knowing origin of meat products for social, religious or health consciousness.

Polyene 특이적인 PCR에 의한 희소 방선균 유래 Cryptic Polyene Hydroxylase 유전자의 분리 (Isolation of Cryptic Polyene Hydroxylase Gene in Rare Actinomycetes via Polyene-specific Degenerate PCR.)

  • 박현주;명지선;박남실;한규범;김상년;김응수
    • 한국미생물·생명공학회지
    • /
    • 제32권3호
    • /
    • pp.282-285
    • /
    • 2004
  • The polyene antibiotics including nystatin, pimaricin, amphotericin and candicidin are a family of most promising antifungal polyketide compounds, typically produced by rare actinomycetes species. The biosynthetic gene clusters for these polyenes have been previously investigated, revealing the presence of highly homologous biosynthetic genes among polyene-producers such as polyketide synthase (PKS) and cytochrome P450 hydroxylase (CYP) genes. Based on amino acid sequence alignment among actinomycetes CYP genes, the highly-conserved regions specific for only polyene CYP genes were identified and chosen for degenerate PCR primers, followed by the PCR-screening with various actinomycetes genomic DNAs. Among tested several polyene non-producing actinomycetes strains, Pseudonorcardia autotrophica strain was selected based on the presence of PCR product with polyene-specific CYP gene primers, and then confirmed to contain a cryptic novel polyene hydroxylase gene in the chromosome. These results suggest that the polyene-specific hydroxylase gene PCR should be an efficient way of screening and isolating potentially-valuable cryptic polyene antibiotic biosynthetic genes from various microorganisms including rare actinomycetes.