• Title/Summary/Keyword: Species distribution models

Search Result 117, Processing Time 0.023 seconds

The biodiversity representation assessment in South Korea's protected area network (보호지역 관리를 위한 생물다양성 평가)

  • Choe, Hye-Yeong;James H., Thorne;Joo, Woo-Yeong;Kwon, Hyuk-Soo
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.23 no.1
    • /
    • pp.77-87
    • /
    • 2020
  • National parks and other protected areas often do not adequately protect national biodiversity because they were originally created for socio-economic and/or aesthetic values. The Korean government has committed to expanding the extent of protected areas to fulfill its commitments to the Aichi Biodiversity Convention. To do so, it is necessary to quantify the current levels of biodiversity representation within existing protected areas and to identify additional conservation needs for vulnerable species and ecological systems. In this study, we assess the proportion of species ranges found in South Korea's protected areas, for the species documented in the 3rd National Ecosystem Survey. We modeled the range distribution of 3,645 species in the following taxonomic groups; plants (1,545 species), mammals (35), birds (132), herptiles (35), and insects (1,898) using the MaxEnt species distribution model and calculated how much of each species' range is within protected areas. On average, 17.4% of plant species' ranges are represented in protected areas, while for mammals and insects an average 12.0% is currently conserved. Conservation representation for herptiles averages 9.3%, while it is 8.6% for birds. Although large proportions of species that have restricted distributions should be represented in protected areas, 17 plant species, two insects (Parnassius bremeri and Lasioglossum occidens), and one bird species (Phylloscopus inornatus) with ranges smaller than 1,000 ㎢ have less than 10% of their ranges within protected areas. Establishing specific conservation goals such as the protection of endangered species or vulnerable taxonomic groups will increase the efficiency of the biodiversity conservation strategies. In addition, lowland coastal areas are critical for biodiversity conservation because the protected areas in South Korea are mainly composed of high mountainous areas.

Habitat prediction and impact assessment of Neolitsea sericea (Blume) Koidz. under Climate Change in Korea (기후변화에 따른 한반도 참식나무 생육지 예측과 영향 평가)

  • Yun, Jong-Hak;Nakao, Katsuhiro;Kim, Jung-Hyun;Kim, Sun-Yu;Park, Chan-Ho;Lee, Byoung-Yoon
    • Journal of Environmental Impact Assessment
    • /
    • v.23 no.2
    • /
    • pp.101-111
    • /
    • 2014
  • The research was carried out in order to find climate factors which determine the distribution of Neolitsea sericea, and the potential habitats (PHs) under the current climate and three climate change scenario by using species distribution models (SDMs). Four climate factors; the minimum temperature of the coldest month (TMC), the warmth index (WI), summer precipitation (PRS), and winter precipition (PRW) : were used as independent variables for the model. Three general circulation models under A1B emission scenarios were used as future climate scenarios for the 2050s (2040~2069) and 2080s (2070~2099). Highly accurate SDMs were obtained for N. sericea. The model of distribution for N. sericea constructed by SDMs showed that minimum temperature of the coldest month (TMC) is a major climate factor in determining the distribution of N. sericea. The area above the $-4.4^{\circ}C$ of TMC revealed high occurrence probability of the N. sericea. Future PHs for N. sericea were projected to increase respectively by 4 times, 6.4 times of current PHs under 2050s and 2080s. It is expected that the potential of N. sericea habitats is expanded gradually. N. sericea is applicable as indicator species for monitoring in the Korean Peninsula. N. sericea is necessary to be monitored of potential habitats.

Distribution Patterns of Biodiversity Hotspot using Birds Data from the 3rd National Ecosystem Survey in South Korea (제3차전국자연환경조사의 조류자료를 활용한 생물다양성 우수지역 분포 연구)

  • Kwon, Hyuk-Soo;Lee, Yun-Kyoung;Yoo, Seung-Hwa;Kim, Dong-Won;Kim, Jang-Soo
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.23 no.3
    • /
    • pp.81-89
    • /
    • 2020
  • The grid-based analysis is useful for conservation planning, species distribution study, education, and others'. On the west coast of Korea, it was high in species richness, rarity and endangered species richness. Our results also showed that coordinated species data can be applied to develop species distribution models due to the high correlation between total species richness and coordinated species 0richness. In hot spot analysis, high species richness areas are concentrated around the west coast, while species richness is relatively low in Gangwon and Gyeongnam. Endangered species and rarity were also concentrated on the west coast and islands. Through the complementary analysis, we selected areas which are efficient to protect species; protecting more species while minimizing the conservation effort. Our result demonstrated that simply protecting Baengyueong island, Gageo island and a part of Jeju island can conserve over 50% of bird species in South Korea. However, the validity of our analysis was limited by the absence of data from national parks, and Baekdudaegan protected areas as well as inconsistent capacity among field researchers.

Predicting the Potential Distributions of Invasive Species Using the Landsat Imagery and Maxent : Focused on "Ambrosia trifida L. var. trifida" in Korean Demilitarized Zone (위성영상과 Maxent를 활용한 생태계교란생물 분포지역 예측 : DMZ의 단풍잎돼지풀을 대상으로)

  • Park, Hyun-Chul;Lim, Jeong-Cheol;Lee, Jung-Hwan;Lee, Gwan-Gyu
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.20 no.1
    • /
    • pp.1-12
    • /
    • 2017
  • This study has been carried out for the purpose of predicting the potential habitat sites of invasive alien plants in the DMZ and providing the basic data for decision-making in managing the future DMZ natural environment. From 2007 to 2015, this study collected the data for the advent of Ambrosia trifida var. trifida through fieldwork around the DMZ area, and simulated the potential distribution area of Ambrosia trifida var. trifida using Maxent model among the models of species distributions. As a result, it showed that the potential distribution area of the Ambrosia trifida var. trifida was concentrated in the western DMZ with relatively low altitude and scanty in the central east regions with relatively high elevation and forest cover rate. Because the invasive alien vegetation is a significant threatening factor in the agriculture and restoration of ecology and it costs a lot to restore the area already invaded by invasive alien vegetation, advance precautions are necessary to prevent biological invasions. It is expected that it is possible to predict the disturbed ecosystems through this study for the efficient land use within DMZ in the future and to apply this study in setting up the areas for the development and conservation within the DMZ.

Mapping Mammalian Species Richness Using a Machine Learning Algorithm (머신러닝 알고리즘을 이용한 포유류 종 풍부도 매핑 구축 연구)

  • Zhiying Jin;Dongkun Lee;Eunsub Kim;Jiyoung Choi;Yoonho Jeon
    • Journal of Environmental Impact Assessment
    • /
    • v.33 no.2
    • /
    • pp.53-63
    • /
    • 2024
  • Biodiversity holds significant importance within the framework of environmental impact assessment, being utilized in site selection for development, understanding the surrounding environment, and assessing the impact on species due to disturbances. The field of environmental impact assessment has seen substantial research exploring new technologies and models to evaluate and predict biodiversity more accurately. While current assessments rely on data from fieldwork and literature surveys to gauge species richness indices, limitations in spatial and temporal coverage underscore the need for high-resolution biodiversity assessments through species richness mapping. In this study, leveraging data from the 4th National Ecosystem Survey and environmental variables, we developed a species distribution model using Random Forest. This model yielded mapping results of 24 mammalian species' distribution, utilizing the species richness index to generate a 100-meter resolution map of species richness. The research findings exhibited a notably high predictive accuracy, with the species distribution model demonstrating an average AUC value of 0.82. In addition, the comparison with National Ecosystem Survey data reveals that the species richness distribution in the high-resolution species richness mapping results conforms to a normal distribution. Hence, it stands as highly reliable foundational data for environmental impact assessment. Such research and analytical outcomes could serve as pivotal new reference materials for future urban development projects, offering insights for biodiversity assessment and habitat preservation endeavors.

A Sensitivity Analysis on Numerical Grid Size of a Three-Dimensional Hydrodynamic and Water Quality Model (EFDC) for the Saemangeum Reservoir (새만금호 3차원 수리.수질모델(EFDC)의 수치격자 민감도 분석)

  • Jeon, Ji Hye;Chung, Se Woong
    • Journal of Korean Society on Water Environment
    • /
    • v.28 no.1
    • /
    • pp.26-37
    • /
    • 2012
  • Multi-dimensional hydrodynamic and water quality models are widely used to simulate the physical and biogeochemical processes in the surface water systems such as reservoirs and estuaries. Most of the models have adopted the Eulerian grid modeling framework, mainly because it can reasonably simulate physical dynamics and chemical species concentrations throughout the entire model domain. Determining the optimum grid cell size is important when using the Eulerian grid-based three-dimensional water quality models because the characteristics of species are assumed uniform in each of the grid cells and chemical species are represented by concentration (mass per volume). The objective of this study was to examine the effect of grid-size of a three dimensional hydrodynamic and water quality model (EFDC) on hydrodynamics and mass transport in the Saemangeum Reservoir. Three grid resolutions, respectively representing coarse (CG), medium (MG), and fine (FG) grid cell sizes, were used for a sensitivity analysis. The simulation results of numerical tracer showed that the grid resolution affects on the flow path, mass transport, and mixing zone of upstream inflow, and results in a bias of temporal and spatial distribution of the tracer. With the CG, in particular, the model overestimates diffusion in the mixing zone, and fails to identify the gradient of concentrations between the inflow and the ambient water.

Spatial Distribution Patterns and Prediction of Hotspot Area for Endangered Herpetofauna Species in Korea (국내 멸종위기양서·파충류의 공간적 분포형태와 주요 분포지역 예측에 대한 연구)

  • Do, Min Seock;Lee, Jin-Won;Jang, Hoan-Jin;Kim, Dae-In;Park, Jinwoo;Yoo, Jeong-Chil
    • Korean Journal of Environment and Ecology
    • /
    • v.31 no.4
    • /
    • pp.381-396
    • /
    • 2017
  • Understanding species distribution plays an important role in conservation as well as evolutionary biology. In this study, we applied a species distribution model to predict hotspot areas and habitat characteristics for endangered herpetofauna species in South Korea: the Korean Crevice Salamander (Karsenia koreana), Suweon-tree frog (Hyla suweonensis), Gold-spotted pond frog (Pelophylax chosenicus), Narrow-mouthed toad (Kaloula borealis), Korean ratsnake (Elaphe schrenckii), Mongolian racerunner (Eremias argus), Reeve's turtle (Mauremys reevesii) and Soft-shelled turtle (Pelodiscus sinensis). The Kori salamander (Hynobius yangi) and Black-headed snake (Sibynophis chinensis) were excluded from the analysis due to insufficient sample size. The results showed that the altitude was the most important environmental variable for their distribution, and the altitude at which these species were distributed correlated with the climate of that region. The predicted distribution area derived from the species distribution modelling adequately reflected the observation site used in this study as well as those reported in preceding studies. The average AUC value of the eigh species was relatively high ($0.845{\pm}0.08$), while the average omission rate value was relatively low ($0.087{\pm}0.01$). Therefore, the species overlaying model created for the endangered species is considered successful. When merging the distribution models, it was shown that five species shared their habitats in the coastal areas of Gyeonggi-do and Chungcheongnam-do, which are the western regions of the Korean Peninsula. Therefore, we suggest that protection should be a high priority in these area, and our overall results may serve as essential and fundamental data for the conservation of endangered amphibian and reptiles in Korea.

A Comparative Study on HSI and MaxEnt Habitat Prediction Models: About Prionailurus bengalensis (HSI와 MaxEnt를 통한 삵의 서식지 예측 모델 비교 연구)

  • Yoo, Da-Young;Lim, Tai-Yang;Kim, Whee-Moon;Song, Won-Kyong
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.24 no.5
    • /
    • pp.1-14
    • /
    • 2021
  • Excessive development and urbanization have destroyed animal, plant, habitats and reduced biodiversity. In order to preserve species diversity, habitat prediction studies are have been conducted at home and overseas using various modeling techniques. This study was conducted to suggest optimal habitat modeling research by comparing HSI and MaxEnt, which are widely used among habitat modeling techniques. The study was targeted on the endangered species of Prionailurus bengalensis in nearby areas (5460.35km2) including Cheonan City, and the same data were used for analysis to compare those models. According to the HSI analysis, Prionailurus bengalensis's habitat probability was 74.65% for less than 0.5 and 25.34% for more than 0.5 and the top 30% were forest (99.07%). MaxEnt's analysis showed that 56.22% of those below 0.5 and 43.79% of those above 0.5 were found to have a high explanatory power of 78.3% of AUC. The Paired Wilcoxn test, which evaluated the significance of thoes models, confirmed that the mean difference between the two models was statistically significant (p<0.05). Analysis of the differences in the results of those models using the matrix table shows that score 24.43% HSI and MaxEnt was accordance,12.44% of the 0.0 to 0.2 section, 7.22% of the 0.2 to 0.4 section, 2.73% of the 0.4 to 0.6 section, 1.96% of the 0.6 to 0.8, and 0.08% of the 0.9 to 1.0. To verify where the score difference appears, the result values of those models were reset to values from 1 to 5 and overlaid. Overlapping analysis resulted in 30.26% of the Strongly agree values, 56.77% of the agree values, and 11.92% of the Disagree values. The places where the difference in scores occurs were analyzed in the order of forest (45.23%), agricultural land (34.57%), and urbanization area (7.65%). This confirmed that the analysis of the same target species within the same target site also has differences in forecasts depending on the modelling method. Therefore, a novel analysis method combining the advantages of each modeling in habitat prediction studies should be developed, and future study may be used to select Prionailurus bengalensis and species-protected areas and species protection areas in the future. Further research is judged to require higher accuracy studies through the use of various modeling techniques and on-site verification.

Study of the Derive of Core Habitats for Kirengeshoma koreana Nakai Using HSI and MaxEnt (HSI와 MaxEnt를 통한 나도승마 핵심서식지 발굴 연구)

  • Sun-Ryoung Kim;Rae-Ha Jang;Jae-Hwa Tho;Min-Han Kim;Seung-Woon Choi;Young-Jun Yoon
    • Korean Journal of Environment and Ecology
    • /
    • v.37 no.6
    • /
    • pp.450-463
    • /
    • 2023
  • The objective of this study is to derive the core habitat of the Kirengeshoma koreana Nakai utilizing Habitat Suitability Index (HSI) and Maximum Entropy (MaxEnt) models. Expert-based models have been criticized for their subjective criteria, while statistical models face difficulties in on-site validation and integration of expert opinions. To address these limitations, both models were employed, and their outcomes were overlaid to derive the core habitat. Five variables were identified through a comprehensive literature review and spatial analysis based on appearance coordinates. The environmental variables encompass vegetation zone, forest type, crown density, annual precipitation, and effective soil depth. Through surveys involving six experts, importance rankings and SI (Suitability Index) scores were established for each variable, subsequently facilitating the creation of an HSI map. Using the same variables, the MaxEnt model was also executed, resulting in a corresponding map, which was merged to construct the definitive core habitat map. Out of 16 observed locations of K. koreana, 15 were situated within the identified core habitat. Furthermore, an area historically known to host K. koreana but not verified in the present, Mt. Yeongchwi, was found to lack a core habitat. These findings suggest that the developed models exhibit a high degree of accuracy and effectively reflect the current ecological landscape.

Assessing the Effects of Climate Change on the Geographic Distribution of Pinus densiflora in Korea using Ecological Niche Model (소나무의 지리적 분포 및 생태적 지위 모형을 이용한 기후변화 영향 예측)

  • Chun, Jung Hwa;Lee, Chang-Bae
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.15 no.4
    • /
    • pp.219-233
    • /
    • 2013
  • We employed the ecological niche modeling framework using GARP (Genetic Algorithm for Ruleset Production) to model the current and future geographic distribution of Pinus densiflora based on environmental predictor variable datasets such as climate data including the RCP 8.5 emission climate change scenario, geographic and topographic characteristics, soil and geological properties, and MODIS enhanced vegetation index (EVI) at 4 $km^2$ resolution. National Forest Inventory (NFI) derived occurrence and abundance records from about 4,000 survey sites across the whole country were used for response variables. The current and future potential geographic distribution of Pinus densiflora, one of the tree species dominating the present Korean forest was modeled and mapped. Future models under RCP 8.5 scenarios for Pinus densiflora suggest large areas predicted under current climate conditions may be contracted by 2090 showing range shifts northward and to higher altitudes. Area Under Curve (AUC) values of the modeled result was 0.67. Overall, the results of this study were successful in showing the current distribution of major tree species and projecting their future changes. However, there are still many possible limitations and uncertainties arising from the select of the presence-absence data and the environmental predictor variables for model input. Nevertheless, ecological niche modeling can be a useful tool for exploring and mapping the potential response of the tree species to climate change. The final models in this study may be used to identify potential distribution of the tree species based on the future climate scenarios, which can help forest managers to decide where to allocate effort in the management of forest ecosystem under climate change in Korea.