• Title/Summary/Keyword: Species distribution model

Search Result 322, Processing Time 0.024 seconds

Thermal Effects on the Development, Fecundity and Life Table Parameters of Aphis craccivora Koch (Hemiptera: Aphididae) on Yardlong Bean (Vigna unguiculata subsp. sesquipedalis (L.)) (갓끈동부콩에서 아카시아진딧물[Aphis craccivora Koch (Hemiptera: Aphididae)]의 온도발육, 성충 수명과 산란 및 생명표분석)

  • Cho, Jum Rae;Kim, Jeong-Hwan;Choi, Byeong-Ryeol;Seo, Bo-Yoon;Kim, Kwang-Ho;Ji, Chang Woo;Park, Chang-Gyu;Ahn, Jeong Joon
    • Korean journal of applied entomology
    • /
    • v.57 no.4
    • /
    • pp.261-269
    • /
    • 2018
  • The cowpea aphid Aphis craccivora Koch (Hemiptera: Aphididae) is a polyphagous species with a worldwide distribution. We investigated the temperature effects on development periods of nymphs, and the longevity and fecundity of apterous female of A. craccivora. The study was conducted at six constant temperatures of 10.0, 15.0, 20.0, 25, 30.0, and $32.5^{\circ}C$. A. craccivora developed successfully from nymph to adult stage at all temperatures subjected. The developmental rate of A. craccivora increased as temperature increased. The lower developmental threshold (LT) and thermal constant (K) of A. craccivora nymph stage were estimated by linear regression as $5.3^{\circ}C$ and 128.4 degree-days (DD), respectively. Lower and higher threshold temperatures (TL, TH and TH-TL, respectively) were calculated by the Sharpe_Schoolfield_Ikemoto (SSI) model as $17.0^{\circ}C$, $34.6^{\circ}C$ and $17.5^{\circ}C$. Developmental completion of nymph stages was described using a three-parameter Weibull function. Life table parameters were estimated. The intrinsic rate of increase was highest at $25^{\circ}C$, while the net reproductive rate was highest at $20^{\circ}C$. Biological characteristics of A. craccivora populations from different geographic areas were discussed.

Reduction effects of N-acetyl-L-cysteine, L-glutathione, and indole-3-acetic acid on phytotoxicity generated by methyl bromide fumigation- in a model plant Arabidopsis thaliana (모델식물 애기장대에 대한 훈증제 메틸브로마이드의 약해발생 및 N-acetyl-L-cysteine, L-glutathione, indole-3-acetic acid의 약해억제 효과)

  • Kim, Kyeongnam;Kim, Chaeeun;Park, Jungeun;Yoo, Jinsung;Kim, Woosung;Jeon, Hwang-Ju;Kim, Jun-Ran;Lee, Sung-Eun
    • Korean Journal of Environmental Biology
    • /
    • v.39 no.3
    • /
    • pp.354-361
    • /
    • 2021
  • Understanding the phytotoxic mechanism of methyl bromide (MB), an essential fumigant during the quarantine and pre-shipment process, is urgently needed to ensure its proper use and reduce international economic losses. In a previous study, two main MB-induced toxic mechanisms such as reactive oxygen species (ROS) and auxin distribution were selected by analyzing transcriptomic analysis. In the study, a 3-week-old A. thaliana was supplied with 1 mM ROS scavengers [N-acetyl-L-cysteine (NAC) or L-glutathione (GSH)] and 1µM indole-3-acetic acid(IAA) three times every 12 h, and visual and gene expression assessments were performed to evaluate the reduction in phytotoxicity by supplements. Phytotoxic effects on the MB-4h exposed group were decreased with GSH application compared to the other single supplements and a combination of supplements at 7 days post fumigation. Among these supplements, GSH at a concentration of 1, 2, and 5mM was suppled to A. thaliana with MB-fumigation. During a long-term observation of 2 weeks after the fumigation, 5 mM GSH application was the most effective in minimizing MB-induced phytotoxic effects with up-regulation of HSP70 expression and increase in main stem length. These results indicated that ROS was a main key factor of MB-induced phytotoxicity and that GSH can be used as a supplement to reduce the phytotoxicity of MB.