• Title/Summary/Keyword: Species alteration

Search Result 117, Processing Time 0.026 seconds

Analysis on the Type of Damaged Land in DeMilitarized Zone(DMZ) Area and Restoration Direction (비무장지대(DMZ) 인근의 훼손지 유형 분석 및 복원방향)

  • Sung, Hyun-Chan;Kim, Su-Ryeon;Kang, Da-In;Seo, Joung-Young;Lee, Sang-Mi
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.19 no.1
    • /
    • pp.185-193
    • /
    • 2016
  • Purpose of this study is to classify damaged lands according to the cause of the damage and their influences based on characteristic of the damaged lands in DeMilitarized Zone(DMZ) area, and utilize this study as a fundamental study for establishment of ecosystem restoration system. Literature review and field survey have been conducted to review the damage status of DMZ area. For field survey, first year and second year have been conducted, in which type of the damage has been reviewed in this study. In the result, types of damage have been classified into 6 categories: 'alteration of initial landform', 'loss of surface layer', 'land pollution', 'alteration of soil chemical property', 'decline of vegetation', and 'invasion of foreign species'. Restoration for each damage type is as following. First, for alteration of initial landform, the land is restored to the original landform prior to the damage and connection to surrounding ecosystem is considered. Second, for loss of surface layer, lost surface layer is restored or further loss is prevented with stabilization. Third, for land pollution, source of the pollution is eradicated or self-circulation with purification of polluted land is encouraged. Fourth, for alteration of soil chemical property, soil is restored of its original property with eradication of the pollution source and improvement of soil. Fifth, for decline of vegetation, current vegetation and anticipated alteration in future are considered and number of wild species is to be increased based on structure and characteristic of nearby vegetation. Sixth, for invasion of foreign species, prevention of dominance by risky species and facilitation ecological stability with ecological management are to be considered. Influence according to the cause of damage has occurred in secondary(indirect) influence or simultaneous occurrence of several damage types. Considering all these aspects, when type of the damage is complex, restoration process for each of former mentioned 6 damage types with solitary influence should be considered in unison.

Supergene Alteration of Basaltic Ash in Udo Tuff Cone, Jeju Island (제주도 우도 현무암질 화산재의 표성 변질작용)

  • Jeong, Gi-Young
    • Journal of the Mineralogical Society of Korea
    • /
    • v.23 no.2
    • /
    • pp.141-150
    • /
    • 2010
  • Basaltic ash of Udo tuff cone, Jeju Island, was almost fresh across strata, but significantly altered toward surface by supergene process. The supergene alteration of the Udo tuff was examined by using X-ray diffraction, scanning and transmission electron microscopy, and electron microprobe analysis for elucidating the alteration process of basaltic ash in terrestrial environments. Fresh ash particles were composed of glass matrix, plagioclase, olivine, and pyroxene. The glass matrix was selectively replaced inward by colloform alteration rinds of Fe-Ti-rich amorphous silicate nanogranules and smectite, often leaving glass core at the center of larger ash particles. Some of the dissolved species released from the altered ash particle precipitated as fine honycomb aggregates of smectite on the pore walls, contributing to the cementation and lithification of volcanic ash.

EVALUATION OF GENETIC TOXICITY FROM ENVIRONMENTAL POLLUTANTS IN DAPHNIA MAGNA AND CHIRONOMUS TENTANS FOR APPLICATION IN ECOLOGICAL RISK ASSESSMENT

  • Park, Sun-Young;Lee, Si-Won;Choi, Jin-Hee
    • Environmental Engineering Research
    • /
    • v.11 no.5
    • /
    • pp.277-284
    • /
    • 2006
  • The genetic toxicity of environmental pollutants, namely, nonylphenol (NP), bisphenol A (BPA) and chloropyriphos (CP) was investigated in aquatic sentinel species, freshwater crustacean, Daphnia magna, and larva of aquatic midge, Chironomus tentans, using Comet assay. Physiological effect of such pollutants was also investigated by studying the specimens' rates of reproduction, growth and survival. Acute toxicity results showed that, as expected, Daphnia was more sensitive than Chironomus to chemical exposure. The order of acute toxicity was CP > NP > BPA in D. magna and NP > CP > BPA in C. tentans. BPA may exert a genotoxic effect on D. magna and C. tentans, given that DNA strand breaks increased in both species exposed to this compound, whereas NP- and CP-induced DNA damage occurred only in C. tentans. In vivo genotoxic data obtained in aquatic sentinel species could provide valuable information for freshwater quality monitoring. The experiments with NP-exposed D. magna showed that the pollutant has long-term effects on reproduction, whereas no short-term effect on DNA integrity was found, being an example of a false-negative result from the biomarkers perspective. This result could be interpreted that other mechanism than genetic alteration might be involved in NP-induced reproduction failure in D. magna. False-positive results from the genotoxic biomarker obtained in BPA-exposed D. magna and in NP-exposed C. tentans make it difficult to use DNA integrity as an early warning biomarker. However, as the mere presence of genotoxic compounds, which are potentially carcinogenic, is of high concern to human and ecosystem health, it could also be important to rapidly and effectively detect genotoxic compounds in the aquatic system in ways that do not necessarily accompany a higher level of alteration. Considering the potential of D. magna and C. tentans as bioindicator species, and the importance of genotoxic biomarkers in ecotoxicity monitoring, DNA damage in these species could provide useful information for environmental risk assessment.

Intergenerics Nuclear Transfer Technology for Conservation of Endangered Species

  • Lee, B.C.;S.K. Kang;J.K. Cho;B. Bavister;W.S. Hwang
    • Proceedings of the Korean Society of Embryo Transfer Conference
    • /
    • 2002.11a
    • /
    • pp.56-62
    • /
    • 2002
  • The International Union for Conservation of Nature and Natural Resources (IUCN) considers the western/lowland bongo Tragelaphus eurycerus eurycerus to be a threatened species, and the eastern/mountain bongo Tragelaphus eurycerus isaaci an endangered species[1]. Although extinction is considered by many biologists to be a natural process during evolution, the exponential growth of the human population has drastically and prematurely reduced the numbers and genetic diversity of many species[2]. Species have evolved to adapt to a specific habitat or environment that meet their survival needs. Alteration or destruction of their habitat results in a species becoming incapable of adapting and hence becoming threatened with extinction. A widespread scientific and public consensus has emerged suggesting that governments should assign high priority to the maintenance of biological diversity via habitat preservation and management far species conservation[3]. Unfortunately, the loss of biological diversity far surpasses the available conservation resources and species are lost forever on a daily basis[4]. Notwithstanding the focus on habitat preservation and wildlife management, conservation biologists have also become increasingly interested in using the technologies of reproductive and developmental biology to help manage or rescue endangered species[5].

  • PDF

Hydrothermal Solution-Rhyolite Reaction and Origin of Sericitite in the Yukwang Mine (유문암-열수 반응과 유광 견운모 광상의 성인)

  • Park, Maeng-Eon;Choi, In-Sik;Kim, Jin-Sup
    • Economic and Environmental Geology
    • /
    • v.25 no.3
    • /
    • pp.225-232
    • /
    • 1992
  • The hydrothermal alteration is evaluated using multicomponent equilibrium calculations with the program CHILLER for the reactions between hydrothermal water and rhyolite at the temperature of $300^{\circ}C$ and pressure of 500 bars. The chemical-reaction model on the depositional processes of the sericitite confirms that the hydrothermal water-rock interaction(hydrothermal alteration) is the main mechanism of the sericitite formation. The principal change in the aqueous phase during the reaction is the pH increase. Overall trends for the major species are the increase in total molalities of K, Ca, $SiO_2$, Al, Mg, Fe, Na, and sulfide in solid phase with hydrothermal water-rhyolite reaction and the decrease of them in aqeous solution by precipitation of hydrothermal products. Quartz and sericite are the first minerals to form. The sequence of minerals to precipitate following them is chlorite, epidote, pyrite and microcline as water/rock ratio decreases. Although calculated results cannot duplicate the complexities of natural hydrothermal alteration, the calculation provides thermodynamic constraints on the natural process. The calculation results resemble those of experimental studies. Sericitite forms where pH decreases and water/rock ratio increases.

  • PDF

Mode of Resistance and/or Tolerance Action of Paraquat (Paraquat 저항성(抵抗性) 및 내성(耐性) 발현(發現) 기구(機構))

  • Ma, Sang-Yong;Chun, Jae-Chul
    • Korean Journal of Environmental Agriculture
    • /
    • v.13 no.3
    • /
    • pp.373-385
    • /
    • 1994
  • Resistance to paraquat (1,1'-dimethyl-4,4'-bipyridilium ion) has developed in 12 species of 8 genera to which paraquat has been applied 6 to 10 times per year for 5 or more years. In recent years, tolerance to paraquat has been found in Rehmannia glutinosa (Gaertn.) Liboch. ex Fisch. & Mey. which has never been applied with any herbicides involving paraquat. In this review, we differentiate the terms, resistance and tolerance, on the basis of the paraquat-exposure history. Five hypotheses have been evaluated in several species as potential mechanisms of paraquat resistance and/or tolerance. In a species, the mode of action may be due to 1) reduced quantities of paraquat absorbed through the leaf surface, 2) detoxification of paraquat caused by the enhanced paraquat-metabolic activity, 3) rapid sequestration reducing level of paraquat at the site of action in chloroplast, 4) alteration of site of action in photosystem I resulting in interruption of electron transport to paraquat, and 5) rapid enzymatic detoxification of superoxide and other toxic forms of oxygen.

  • PDF

Verification of aecial host ranges of four Gymnosporangium species based on artificial inoculation.

  • Yun, Hye-Young;Lee, Seung-Kyu;Lee, Kyung-Joon
    • Proceedings of the Korean Society of Plant Pathology Conference
    • /
    • 2003.10a
    • /
    • pp.134.1-134
    • /
    • 2003
  • Aecial host ranges of four Gymnosporangium species causing cedar-apple rust diseases, G. asiaticum, G. cornutum, 5. japonicum and G. yamadae, were investigated through artificial inoculation. Thirteen species of nine genera among Rosaceous plants, which have been reported as social hosts in Korea, were inoculated with fresh teliospores spores in early days of May of 2000 and of 2001, respectively. In the results, we re-confirmed that there was highly specific relationship between the rust species and aecial hosts and report new aecial hosts of four Gymnosporangium species. Teliospores of G. cornutum collected from Juniperus rigida successively produced spermogonia and aecia only on Sorbus alntifolia, the first report on host alteration of G. cornutum in Korea. Positive responses by teliospores of G. japonicum from J. chinenis of Suwon and from J. chinenis var. horizontalis of Jeju island were obtained only on P. villosa. Crataegus pinnatifida was confirmed as a new aecial host of G. viatium. Until this time, G. ymadae was believed to have Malus as the aecial host. However, teliospores of G. yamadae collected from J. chinensis var. kaizuka successively formed spermogonia and aecia on the leaves of Chaenomeles lagenaria, C. sinensis, Pyrus pyrtifolia var, culta, P. ussuriensis, Malus pumila and M. sileboldii. The date for maturation of spermogonia and aecia, and symptom development varied according to the rust fungi and aecial host plants, respectively.

  • PDF

Caloric restriction and its mimetics

  • Lee, Shin-Hae;Min, Kyung-Jin
    • BMB Reports
    • /
    • v.46 no.4
    • /
    • pp.181-187
    • /
    • 2013
  • Caloric restriction is the most reliable intervention to prevent age-related disorders and extend lifespan. The reduction of calories by 10-30% compared to an ad libitum diet is known to extend the longevity of various species from yeast to rodents. The underlying mechanisms by which the benefits of caloric restriction occur have not yet been clearly defined. However, many studies are being conducted in an attempt to elucidate these mechanisms, and there are indications that the benefits of caloric restriction are related to alteration of the metabolic rate and the accumulation of reactive oxygen species. During molecular signaling, insulin/insulin-like growth factor signaling, target of rapamycin pathway, adenosine monophosphate activated protein kinase signaling, and Sirtuin are focused as underlying pathways that mediate the benefits of caloric restriction. Here, we will review the current status of caloric restriction.

Species Alterations Caused by Nitrogen and Carbon Addition in Nutrient-deficient Municipal Waste Landfills

  • Kim, Kee-Dae
    • Journal of Ecology and Environment
    • /
    • v.30 no.2
    • /
    • pp.161-170
    • /
    • 2007
  • The ultimate target of restoring waste landfills is revegetation. The most effective method for increasing species richness and biomass in nutrient limited waste landfills is the use of fertilizers. The aim of the present study was to investigate the effects of nitrogen fertilizer, and the addition of carbon through sawdust, sucrose and litter, on vegetation dynamics at a representative municipal waste landfill in South Korea: Kyongseodong. A total of 288 permanent plots $(0.25m^2)$ were established and treated with nitrogen fertilizer (5, 10 and $20Ng/m^2$), sawdust $(289g/m^2)$ sucrose $(222g/m^2)$ and litter $(222g/m^2)$. The aboveground biomass was significantly enhanced by nitrogen fertilizer at 5 and $10Ng/m^2$, compared with the control plots. The total cover of all plant species increased significantly on plots treated with 5 and $20Ng/m^2$, as well as on those treated with sawdust and sucrose, compared with the control plots. The higher species richness after nitrogen fertilization of 10 to $20Ng/m^2$, and the sawdust and sucrose treatment demonstrated that this was an appropriate restoration option for nutrient deficient waste landfills. This study demonstrated positive nutrient impacts on plant biomass and species richness, despite the fact that municipal waste landfills are ecosystems that are highly disturbed by anthropogenic and internal factors (landfill gas and leachate). Adequate N and C combined treatments will accelerate species succession (higher species richness and perennial increase) for restoration of waste landfills.

Alteration of macronutrients, metal translocation and bioaccumulation as potential indicators of nickel tolerance in three Vigna species

  • Ishtiaq, Shabnam;Mahmood, Seema;Athar, Mohammad
    • Advances in environmental research
    • /
    • v.3 no.1
    • /
    • pp.71-86
    • /
    • 2014
  • Macronutrients ($Na^+$, $K^+$, $Ca^{2+}$, $Mg^{2+}$), yield and yield components, bioaccumulation and translocation of metal in plant parts of three Vigna species (V. cylindrica, V. mungo, V. radiata) were evaluated at 0, 50, 100 and $150mgkg^{-1}$ soil of Nickel (Ni). A marked inhibition (p < 0.001) in the distribution of various macronutrients was noticed in these Vigna species except for $Mg^{2+}$ content of the shoot and leaves. Similarly, all species retained more $Ca^{2+}$ in their roots (p < 0.05) as compared to the aerial tissues. Ni induced a drastic decline (p < 0.001) for various yield and yield attributes except for 100 seed weight. Toxicity and accumulation of Ni in plant tissues considerably increased in a concentration dependent manner. Vigna species signify an exclusion approach for Ni tolerance as both bioaccumulation factor (BF) and translocation factor (TF) were less than 1.0. The Ni content of plants being root > shoot > leaves > seeds. Scoring for percentage stimulation and inhibition (respective to control) at varying levels of Ni revealed tolerance of the species in an order of V. radiata > V. cylindrica > V. mungo. The acquisition of Ni tolerance in V. radiata seems to occur through an integrated mechanism of metal tolerance that includes sustainable macronutrients uptake, stronger roots due to greater deposition of $Ca^{2+}$in the roots, restricted transfer of Ni to above ground tissues and seeds as well as exclusion capacity of the roots to bind appreciable amount of metal to them. Thus, metal tolerant potential of V. radiata could be of great significance to remediate metal contaminated soil owing lesser impact of Ni on macro-nutrients, hence the yield.