• Title/Summary/Keyword: Specialized AI

Search Result 67, Processing Time 0.023 seconds

Investigating the Restructuring of Artificial Intelligence Curriculum in Specialized High Schools Following AI Department Reorganization (특성화고 인공지능학과 개편에 따른 인공지능 교육과정 개편 방안 연구)

  • EunHee Goo
    • Journal of Practical Engineering Education
    • /
    • v.16 no.1_spc
    • /
    • pp.41-49
    • /
    • 2024
  • The advancement of artificial intelligence on a global scale is significantly transforming life. In the field of education, there is a strong emphasis on actively utilizing AI and fostering creatively integrated talents with diverse knowledge. In alignment with this trend, there is a paradigm shift in AI education across primary, middle, high school, as well as university and graduate education. Leading AI schools and specialized high schools are dedicated to enhancing students' AI capabilities, while universities integrate AI into software courses or establish new AI departments to nurture talent. In AI-integrated education graduate programs, national efforts are underway to educate instructors from various disciplines on applying AI technology to the curriculum. In this context, specialized high schools are also restructuring their departments to cultivate technological talent in AI, tailored to students' characteristics and career paths. While the current education focuses primarily on the fundamental concepts and technologies of AI, there is a need to address the aspect of developing practical problem-solving skills. Therefore, this research aims to compare and analyze essential educational courses in AI-leading schools, AI-integrated high schools, AI high schools, university AI departments, and AI-integrated education graduate programs. The goal is to propose the necessary educational courses for AI education in specialized high schools, with the expectation that a more advanced curriculum in AI education can be established in specialized high schools through this effort.

Analysis of the Security Requirements of the Chatbot Service Implementation Model (챗봇서비스 구현 모델의 보안요구사항 분석)

  • Kyu-min Cho;Jae-il Lee;Dong-kyoo Shin
    • Journal of Internet Computing and Services
    • /
    • v.25 no.1
    • /
    • pp.167-176
    • /
    • 2024
  • Chatbot services are used in various fields in connection with AI services. Security research on AI is also in its infancy, but research on practical security in the service implementation stage using it is more insufficient. This paper analyzes the security requirements for chatbot services linked to AI services. First, the paper analyzes the recently published papers and articles on AI security. A general implementation model is established by investigating chatbot services provided in the market. The implementation model includes five components including a chatbot management system and an AI engine Based on the established model, the protection assets and threats specialized in Chatbot services are summarized. Threats are organized around threats specialized in chatbot services through a survey of chatbot service managers in operation. Ten major threats were drawn. It derived the necessary security areas to cope with the organized threats and analyzed the necessary security requirements for each area. This will be used as a security evaluation criterion in the process of reviewing and improving the security level of chatbot service.

Application Strategies of Superintelligent AI in the Defense Sector: Emphasizing the Exploration of New Domains and Centralizing Combat Scenario Modeling (초거대 인공지능의 국방 분야 적용방안: 새로운 영역 발굴 및 전투시나리오 모델링을 중심으로)

  • PARK GUNWOO
    • The Journal of the Convergence on Culture Technology
    • /
    • v.10 no.3
    • /
    • pp.19-24
    • /
    • 2024
  • The future military combat environment is rapidly expanding the role and importance of artificial intelligence (AI) in defense, aligning with the current trends of declining military populations and evolving dynamics. Particularly, in the civilian sector, AI development has surged into new domains based on foundation models, such as OpenAI's Chat-GPT, categorized as Super-Giant AI or Hyperscale AI. The U.S. Department of Defense has organized Task Force Lima under the Chief Digital and AI Office (CDAO) to conduct research on the application of Large Language Models (LLM) and generative AI. Advanced military nations like China and Israel are also actively researching the integration of Super-Giant AI into their military capabilities. Consequently, there is a growing need for research within our military regarding the potential applications and fields of application for Super-Giant AI in weapon systems. In this paper, we compare the characteristics and pros and cons of specialized AI and Super-Giant AI (Foundation Models) and explore new application areas for Super-Giant AI in weapon systems. Anticipating future application areas and potential challenges, this research aims to provide insights into effectively integrating Super-Giant Artificial Intelligence into defense operations. It is expected to contribute to the development of military capabilities, policy formulation, and international security strategies in the era of advanced artificial intelligence.

ETRI AI Strategy #5: Nurturing AI Professionals (ETRI AI 실행전략 5: AI 전문인력 양성)

  • Hong, A.R.;Kim, S.M.;Han, E.S.;Yeon, S.J.
    • Electronics and Telecommunications Trends
    • /
    • v.35 no.7
    • /
    • pp.46-55
    • /
    • 2020
  • As artificial intelligence (AI) technology becomes more important, the demand for AI talent is increasing. However, there is a shortage of AI talent around the world, and it is difficult to secure. Therefore, it has become more important to nurture the AI workforce. The private sector and government in Korea and other countries are making an effort to cultivate AI talent, and ETRI has proposed "Nurturing AI Professionals" as ETRI AI Strategy #5 to meet both internal and national demands for AI talent. ETRI has suggested three key tasks to implement AI Strategy #5. The first one is to create a "top-notch AI talent training project: the ETRI AI Academy" to strengthen AI research capabilities. The second one is "nurturing AI engineers specialized in local-based industries: the ETRI AI Business School" to help supply the necessary AI workforce in the industry. The third one is the "contribution to AI education service for people: ETRI AI Literacy" to raise the public's understanding and utilization of AI.

Enhancing Video Storyboarding with Artificial Intelligence: An Integrated Approach Using ChatGPT and Midjourney within AiSAC

  • Sukchang Lee
    • International Journal of Advanced Culture Technology
    • /
    • v.11 no.3
    • /
    • pp.253-259
    • /
    • 2023
  • The increasing incorporation of AI in video storyboard creation has been observed recently. Traditionally, the production of storyboards requires significant time, cost, and specialized expertise. However, the integration of AI can amplify the efficiency of storyboard creation and enhance storytelling. In Korea, AiSAC stands at the forefront of AI-driven storyboard platforms, boasting the capability to generate realistic images built on open datasets foundations. Yet, a notable limitation is the difficulty in intricately conveying a director's vision within the storyboard. To address this challenge, we proposed the application of image generation features from ChatGPT and Midjourney to AiSAC. Through this research, we aimed to enhance the efficiency of storyboard production and refined the intricacy of expression, thereby facilitating advancements in the video production process.

Analysis of Perceptions and Differences between Groups regarding Generative AI (생성형 AI에 관한 인식 및 집단간 차이 분석)

  • Kyoo-Sung Noh
    • Journal of Digital Convergence
    • /
    • v.22 no.1
    • /
    • pp.15-21
    • /
    • 2024
  • The purpose of this study is to analyze the use of generative AI and the perception of differences between user groups. This study explored the perceptions of different user groups regarding generative AI, aiming to derive implications for enhancing AI utilization capabilities for each group. Upon analysis, it was found that there were no significant differences in perceptions across age groups. However, notable differences were observed between professional backgrounds, particularly in the areas of generative AI application and ethical perspectives. Consequently, this study suggests the need for diversified AI solutions tailored to specific fields of expertise. It underscores the importance of customized education and training programs, as well as specialized education focused on ethical considerations. Additionally, this research contributes academically by proposing varied AI usage strategies for different age and professional groups. It also highlights the role of text mining techniques in developing and improving AI utilization skills.

Presenting Practical Approaches for AI-specialized Fields in Gwangju Metro-city (광주광역시의 AI 특화분야를 위한 실용적인 접근 사례 제시)

  • Cha, ByungRae;Cha, YoonSeok;Park, Sun;Shin, Byeong-Chun;Kim, JongWon
    • Smart Media Journal
    • /
    • v.10 no.1
    • /
    • pp.55-62
    • /
    • 2021
  • We applied machine learning of semi-supervised learning, transfer learning, and federated learning as examples of AI use cases that can be applied to the three major industries(Automobile industry, Energy industry, and AI/Healthcare industry) of Gwangju Metro-city, and established an ML strategy for AI services for the major industries. Based on the ML strategy of AI service, practical approaches are suggested, the semi-supervised learning approach is used for automobile image recognition technology, and the transfer learning approach is used for diabetic retinopathy detection in the healthcare field. Finally, the case of the federated learning approach is to be used to predict electricity demand. These approaches were tested based on hardware such as single board computer Raspberry Pi, Jaetson Nano, and Intel i-7, and the validity of practical approaches was verified.

Development of AI Convergence Education Model Based on Machine Learning for Data Literacy (데이터 리터러시를 위한 머신러닝 기반 AI 융합 수업 모형 개발)

  • Sang-Woo Kang;Yoo-Jin Lee;Hyo-Jeong Lim;Won-Keun Choi
    • Advanced Industrial SCIence
    • /
    • v.3 no.1
    • /
    • pp.1-16
    • /
    • 2024
  • The purpose of this study is to develop a machine learning-based AI convergence class model and class design principles that can foster data literacy in high school students, and to develop detailed guidelines accordingly. We developed a machine learning-based teaching model, design principles, and detailed guidelines through research on prior literature, and applied them to 15 students at a specialized high school in Seoul. As a result of the study, students' data literacy improved statistically significantly (p<.001), so we confirmed that the model of this study has a positive effect on improving learners' data literacy, and it is expected that it will lead to related research in the future.

Current Status and Future Direction of Artificial Intelligence in Healthcare and Medical Education (의료분야에서 인공지능 현황 및 의학교육의 방향)

  • Jung, Jin Sup
    • Korean Medical Education Review
    • /
    • v.22 no.2
    • /
    • pp.99-114
    • /
    • 2020
  • The rapid development of artificial intelligence (AI), including deep learning, has led to the development of technologies that may assist in the diagnosis and treatment of diseases, prediction of disease risk and prognosis, health index monitoring, drug development, and healthcare management and administration. However, in order for AI technology to improve the quality of medical care, technical problems and the efficacy of algorithms should be evaluated in real clinical environments rather than the environment in which algorithms are developed. Further consideration should be given to whether these models can improve the quality of medical care and clinical outcomes of patients. In addition, the development of regulatory systems to secure the safety of AI medical technology, the ethical and legal issues related to the proliferation of AI technology, and the impacts on the relationship with patients also need to be addressed. Systematic training of healthcare personnel is needed to enable adaption to the rapid changes in the healthcare environment. An overall review and revision of undergraduate medical curriculum is required to enable extraction of significant information from rapidly expanding medical information, data science literacy, empathy/compassion for patients, and communication among various healthcare providers. Specialized postgraduate AI education programs for each medical specialty are needed to develop proper utilization of AI models in clinical practice.

Application of Artificial Intelligence-based Digital Pathology in Biomedical Research

  • Jin Seok Kang
    • Biomedical Science Letters
    • /
    • v.29 no.2
    • /
    • pp.53-57
    • /
    • 2023
  • The main objective of pathologists is to achieve accurate lesion diagnoses, which has become increasingly challenging due to the growing number of pathological slides that need to be examined. However, using digital technology has made it easier to complete this task compared to older methods. Digital pathology is a specialized field that manages data from digitized specimen slides, utilizing image processing technology to automate and improve analysis. It aims to enhance the precision, reproducibility, and standardization of pathology-based researches, preclinical, and clinical trials through the sophisticated techniques it employs. The advent of whole slide imaging (WSI) technology is revolutionizing the pathology field by replacing glass slides as the primary method of pathology evaluation. Image processing technology that utilizes WSI is being implemented to automate and enhance analysis. Artificial intelligence (AI) algorithms are being developed to assist pathologic diagnosis and detection and segmentation of specific objects. Application of AI-based digital pathology in biomedical researches is classified into four areas: diagnosis and rapid peer review, quantification, prognosis prediction, and education. AI-based digital pathology can result in a higher accuracy rate for lesion diagnosis than using either a pathologist or AI alone. Combining AI with pathologists can enhance and standardize pathology-based investigations, reducing the time and cost required for pathologists to screen tissue slides for abnormalities. And AI-based digital pathology can identify and quantify structures in tissues. Lastly, it can help predict and monitor disease progression and response to therapy, contributing to personalized medicine.