• Title/Summary/Keyword: Special Boundary Element

Search Result 75, Processing Time 0.024 seconds

Geometrically non-linear transient C° finite element analysis of composite and sandwich plates with a refined theory

  • Kommineni, J.R.;Kant, T.
    • Structural Engineering and Mechanics
    • /
    • v.1 no.1
    • /
    • pp.87-102
    • /
    • 1993
  • A $C^{\circ}$ continuous finite element formulation of a higher order displacement theory is presented for predicting linear and geometrically non-linear in the sense of von Karman transient responses of composite and sandwich plates. The displacement model accounts for non-linear cubic variation of tangential displacement components through the thickness of the laminate and the theory requires no shear correction coefficients. In the time domain, the explicit central difference integrator is used in conjunction with the special mass matrix diagonalization scheme which conserves the total mass of the element and included effects due to rotary inertia terms. The parametric effects of the time step, finite element mesh, lamination scheme and orthotropy on the linear and geometrically non-linear responses are investigated. Numerical results for central transverse deflection, stresses and stress resultants are presented for square/rectangular composite and sandwich plates under various boundary conditions and loadings and these are compared with the results from other sources. Some new results are also tabulated for future reference.

Finite Element Modeling of Contact Joints by Flexibility Influence Coefficient (유연도 영향계수법을 이용한 접촉 결합부의 모델링)

  • 오제택;조성욱;이규봉
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.814-819
    • /
    • 2003
  • Machine tool design concepts have evolved towards high efficiency, accurate precision. high structural integrity, and multi-functional systems. Like many other structures, machine tools are also composed of many parts. When these parts are assembled, many kinds of joints are used. In the finite element analysis of these assembled structures, most joints are commonly considered as rigid joints. But, to get the more accurate solution, we need to model these joints in a appropriate manner. In this study, rational dynamic modeling and analysis method for complex structures are studied with special attention to slide way joints. For modeling of slide way joints, a general modeling technique is used by influence coefficients method which is applied to the conversion of detailed finite element model to the equivalent reduced joint model. The theoretical part of this method is illustrated and the method is applied to the structure with slide way joint. In this method. the non-linearity of the contact surfaces is considered within a proper range and the boundary effect of the joint model can be eliminated. The proposed method was applied to finite element modal analysis of a clamp jointed cantilever beam and slide way joints of the vertical type lathe. The method can also be used to other kinds of joint modeling. The results of these analysis were compared with those of Yoshimura models and rigid joint models. which demonstrated the practical applicability of the proposed method.

  • PDF

THEORETICAL ANALYSIS FOR STUDYING THE FRETTING WEAR PROBLEM OF STEAM GENERATOR TUBES IN A NUCLEAR POWER PLANT

  • LEE CROON YEOL;CHAI YOUNG SUCK;BAE JOON WOO
    • Nuclear Engineering and Technology
    • /
    • v.37 no.2
    • /
    • pp.201-206
    • /
    • 2005
  • Fretting, which is a special type of wear, is defined as small amplitude relative motion along the contacting interface between two materials. The structural integrity of steam generators in nuclear power plants is very much dependent upon the fretting wear characteristics of Inconel 690 U-tubes. In this study, a finite element model that can simulate fretting wear on the secondary side of the steam generator was developed and used for a quantitative investigation of the fretting wear phenomenon. Finite element modeling of elastic contact wear problems was performed to demonstrate the feasibility of applying the finite element method to fretting wear problems. The elastic beam problem, with existing solutions, is treated as a numerical example. By introducing a control parameter s, which scaled up the wear constant and scaled down the cycle numbers, the algorithm was shown to greatly reduce the time required for the analysis. The work rate model was adopted in the wear model. In the three-dimensional finite element analysis, a quarterly symmetric model was used to simulate cross tubes contacting at right angles. The wear constant of Inconel 690 in the work rate model was taken as $K=26.7{\times}10^{-15}\;Pa^{-1}$ from experimental data obtained using a fretting wear test rig with a piezoelectric actuator. The analyses revealed donut-shaped wear along the contacting boundary, which is a typical feature of fretting wear.

A Study on the Latter Baekje Dynasty Royal Tombs and Boundary of the Royal Tomb (백제 후기 능묘와 능원의 특성)

  • Kim, Young-sung
    • Korean Journal of Heritage: History & Science
    • /
    • v.47 no.2
    • /
    • pp.68-84
    • /
    • 2014
  • The royal tombs of Baekje(백제), after the transfer of the capital to the Geumgang(riv)(금강) basin, changed to Songsanri(송산리) style(stone chamber) ${\rightarrow}$ Southern dynastic(남조) style(brick chamber) ${\rightarrow}$ Neungsanri(능산리) style(stone chamber). The most special feature of this process is the change of the ceiling structure. The ceiling had been changed from dome(Songsanri style) ${\rightarrow}$ tunnel ceiling(transition period of brick tombs and Neungsanri style) ${\rightarrow}$ a roof style(is Neungsanri style of three imitate type, trapezoid, triangle, flattened ceiling). The most special feature among this process is Neungsanri style(stone chamber), created especially in Baekje. The royal tombs of Baekje didn't lay stress on the mound, so the mound is not noticeable. It is result that they more stressed on basin of the boundary than showed off individual tomb, and this is count as an element of China Southern dynasty. Boundary of the royal tomb of Baekje, after the transfer of the capital to south, were changed from royal family's boundary to single independent's. Those are Songsanri's and Neungsanri's, these are the pair tombs(쌍릉) of Iksan(익산). That is influence of the Southern dynasty, reflect the theory of divination based on topography completely, this is influence of the China Sui(수) and the early Tang(당) dynasty's system of boundary of the royal tomb. Besides the royal tomb, they also buried a closely related person, in the boundary of the royal tomb. And facilities for memorial ceremony were existed too. An altar was equipped in Songsanri's boundary of the royal tomb, it was seen a kind of character of a sanctuary for progenitor. Neungsanri's boundary of the royal tomb were equipped with an open-aired altar that performed memorial ceremony about communal royal tombs, and also equipped a temple, was needed to pray for the happiness of the dead. This structure and arrangement are very similar to Seoakdong(서악동) of Silla(신라).

A Study on Structural Dynamic Modification of Ship Structure by Using FRF Synthesis Method (전달함수 합성법을 이용한 선박구조변경)

  • Choi, Su-Hyun;Kim, Kuk-Su
    • Special Issue of the Society of Naval Architects of Korea
    • /
    • 2006.09a
    • /
    • pp.53-58
    • /
    • 2006
  • When the vibration troubles occur on the ship structure during the sea trial, the rectification work is very restricted because of in-situ limitation. Usually the finite element method is used to improve vibration characteristics of the structure, but it takes lots of time and effort in modeling the structure and adjusting the finite element model in order to consider appropriate boundary conditions of a complex ship structure. Therefore, experimental methods have been in general suggested to obtain proper countermeasures without time-consuming in modeling. In this paper, FRF(frequency response function) synthesis method is applied to estimate natural frequency of the modified ship structure, which is obtained from experimental and numerical methods.

  • PDF

Structural health rating (SHR)-oriented 3D multi-scale finite element modeling and analysis of Stonecutters Bridge

  • Li, X.F.;Ni, Y.Q.;Wong, K.Y.;Chan, K.W.Y.
    • Smart Structures and Systems
    • /
    • v.15 no.1
    • /
    • pp.99-117
    • /
    • 2015
  • The Stonecutters Bridge (SCB) in Hong Kong is the third-longest cable-stayed bridge in the world with a main span stretching 1,018 m between two 298 m high single-leg tapering composite towers. A Wind and Structural Health Monitoring System (WASHMS) is being implemented on SCB by the Highways Department of The Hong Kong SAR Government, and the SCB-WASHMS is composed of more than 1,300 sensors in 15 types. In order to establish a linkage between structural health monitoring and maintenance management, a Structural Health Rating System (SHRS) with relevant rating tools and indices is devised. On the basis of a 3D space frame finite element model (FEM) of SCB and model updating, this paper presents the development of an SHR-oriented 3D multi-scale FEM for the purpose of load-resistance analysis and damage evaluation in structural element level, including modeling, refinement and validation of the multi-scale FEM. The refined 3D structural segments at deck and towers are established in critical segment positions corresponding to maximum cable forces. The components in the critical segment region are modeled as a full 3D FEM and fitted into the 3D space frame FEM. The boundary conditions between beam and shell elements are performed conforming to equivalent stiffness, effective mass and compatibility of deformation. The 3D multi-scale FEM is verified by the in-situ measured dynamic characteristics and static response. A good agreement between the FEM and measurement results indicates that the 3D multi-scale FEM is precise and efficient for WASHMS and SHRS of SCB. In addition, stress distribution and concentration of the critical segments in the 3D multi-scale FEM under temperature loads, static wind loads and equivalent seismic loads are investigated. Stress concentration elements under equivalent seismic loads exist in the anchor zone in steel/concrete beam and the anchor plate edge in steel anchor box of the towers.

Analysis of Element distribution and Degradation Characteristics in the grain boundary of ZnO Ceramic Varistors with EPMA (EPMA를 이용한 ZnO 세라믹 바리스터 입계의 원소분포와 열화특성 분석)

  • So, Soon-Jin;Kim, Young-Jin;Park, Young-Soon;Park, Choon-Bae
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.04b
    • /
    • pp.64-67
    • /
    • 2000
  • Element distribution analysis and degradation characteristics of the ZnO varistors fabricated at the ambient sintering-process is investigated in this study. ZnO varistors made of Matsuoka's composition were fabricated by standard ceramic techniques. The ambient sintering-process is performed at the special electrical-furnace which is equipped with the vacuum system. The Gases of injection at sintering- process were oxygen, air, nitrogen and argon respectively. Element and quantitative analysis in the microstructure of ZnO varistors made use of EPMA equipment. Degradation characteristics were showed by DC degradation tests at $115{\pm}2\;^{\circ}C$ for period up to 13 h. From above analysis, it is found that at the DC degradation test the ZnO varistor sintered in oxygen atmosphere showed the excellent prop properties among them and these results could be explain by element and quantitative analysis in ZnO microstructure.

  • PDF

Thermal Distortion Analysis by Inconel Over-lay at Circular Moonpool Structures (인코넬 육성용접에 의한 원형 문풀구조 선체블록의 열변형해석)

  • Ha, Yun-Sok
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.49 no.4
    • /
    • pp.304-311
    • /
    • 2012
  • One of the main features of Drillship or FPSO is a moonpool structure. The moonpool structures have various accuracy tolerances according to their functions and targets. This study is mainly interested in roundness of a circular moonpool structure in FPSO. Because this structure needs abrasion-resistance at which bearing of machine touches on inner wall of moonpool, we should do over-lay welding widely and deeply by using Inconel weld material. But a general over-lay can cause a severe distortion at ship block structure. If we can analyze the roundness by thermal distortion under Inconel over-lay, we can establish a special erection policy by the results. In this study, we designed stress-strain curve for strain-boundary condition analysis by an elasto-plastic material property. The results made us to decide an appropriate ship-block size and policy of crane manipulation will follow for its capacity. If a structure that needs over-lay is not large, solid elements also are not a bad choice for FEM modeling. Therefore we also developed a standard of using strain-boundary method that shell elements are used as over-lay on solid element modeling.

Study on the bearing capacity of cold-formed steel under different boundary conditions in transmission towers

  • Han, Junke;Zhao, Xu;Tang, Zhenyun;Ma, Hua;Li, Zhenbao
    • Earthquakes and Structures
    • /
    • v.12 no.6
    • /
    • pp.665-672
    • /
    • 2017
  • Cold-formed steel is widely used in steel structures, especially in transmission towers, because of advantages such as low weight, high strength, excellent mechanical properties, etc. However, there is not a special design code for cold-formed steel use in transmission towers in China. For this study, a total of 105 compression members were tested statically to investigate the bearing capacity of cold-formed steel members under different boundary conditions in transmission towers. The test results were compared to the results predicted by the current design codes. For deeper insight, additional coupled members were simulated using finite element analysis. An improved design method was developed based on the experimental and analytical results.

A multiscale method for analysis of heterogeneous thin slabs with irreducible three dimensional microstructures

  • Wang, Dongdong;Fang, Lingming
    • Interaction and multiscale mechanics
    • /
    • v.3 no.3
    • /
    • pp.213-234
    • /
    • 2010
  • A multiscale method is presented for analysis of thin slab structures in which the microstructures can not be reduced to two-dimensional plane stress models and thus three dimensional treatment of microstructures is necessary. This method is based on the classical asymptotic expansion multiscale approach but with consideration of the special geometric characteristics of the slab structures. This is achieved via a special form of multiscale asymptotic expansion of displacement field. The expanded three dimensional displacement field only exhibits in-plane periodicity and the thickness dimension is in the global scale. Consequently by employing the multiscale asymptotic expansion approach the global macroscopic structural problem and the local microscopic unit cell problem are rationally set up. It is noted that the unit cell is subjected to the in-plane periodic boundary conditions as well as the traction free conditions on the out of plane surfaces of the unit cell. The variational formulation and finite element implementation of the unit cell problem are discussed in details. Thereafter the in-plane material response is systematically characterized via homogenization analysis of the proposed special unit cell problem for different microstructures and the reasoning of the present method is justified. Moreover the present multiscale analysis procedure is illustrated through a plane stress beam example.