• Title/Summary/Keyword: Speaker recognition systems

Search Result 86, Processing Time 0.022 seconds

Performance Improvement of Speaker Recognition Using Enhanced Feature Extraction in Glottal Flow Signals and Multiple Feature Parameter Combination (Glottal flow 신호에서의 향상된 특징추출 및 다중 특징파라미터 결합을 통한 화자인식 성능 향상)

  • Kang, Jihoon;Kim, Youngil;Jeong, Sangbae
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.12
    • /
    • pp.2792-2799
    • /
    • 2015
  • In this paper, we utilize source mel-frequency cepstral coefficients (SMFCCs), skewness, and kurtosis extracted in glottal flow signals to improve speaker recognition performance. Generally, because the high band magnitude response of glottal flow signals is somewhat flat, the SMFCCs are extracted using the response below the predefined cutoff frequency. The extracted SMFCC, skewness, and kurtosis are concatenated with conventional feature parameters. Then, dimensional reduction by the principal component analysis (PCA) and the linear discriminat analysis (LDA) is followed to compare performances with conventional systems under equivalent conditions. The proposed recognition system outperformed the conventional system for large scale speaker recognition experiments. Especially, the performance improvement was more noticeable for small Gaussan mixtures.

AI-based language tutoring systems with end-to-end automatic speech recognition and proficiency evaluation

  • Byung Ok Kang;Hyung-Bae Jeon;Yun Kyung Lee
    • ETRI Journal
    • /
    • v.46 no.1
    • /
    • pp.48-58
    • /
    • 2024
  • This paper presents the development of language tutoring systems for nonnative speakers by leveraging advanced end-to-end automatic speech recognition (ASR) and proficiency evaluation. Given the frequent errors in non-native speech, high-performance spontaneous speech recognition must be applied. Our systems accurately evaluate pronunciation and speaking fluency and provide feedback on errors by relying on precise transcriptions. End-to-end ASR is implemented and enhanced by using diverse non-native speaker speech data for model training. For performance enhancement, we combine semisupervised and transfer learning techniques using labeled and unlabeled speech data. Automatic proficiency evaluation is performed by a model trained to maximize the statistical correlation between the fluency score manually determined by a human expert and a calculated fluency score. We developed an English tutoring system for Korean elementary students called EBS AI Peng-Talk and a Korean tutoring system for foreigners called KSI Korean AI Tutor. Both systems were deployed by South Korean government agencies.

A Study on Design and Implementation of Speech Recognition System Using ART2 Algorithm

  • Kim, Joeng Hoon;Kim, Dong Han;Jang, Won Il;Lee, Sang Bae
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.4 no.2
    • /
    • pp.149-154
    • /
    • 2004
  • In this research, we selected the speech recognition to implement the electric wheelchair system as a method to control it by only using the speech and used DTW (Dynamic Time Warping), which is speaker-dependent and has a relatively high recognition rate among the speech recognitions. However, it has to have small memory and fast process speed performance under consideration of real-time. Thus, we introduced VQ (Vector Quantization) which is widely used as a compression algorithm of speaker-independent recognition, to secure fast recognition and small memory. However, we found that the recognition rate decreased after using VQ. To improve the recognition rate, we applied ART2 (Adaptive Reason Theory 2) algorithm as a post-process algorithm to obtain about 5% recognition rate improvement. To utilize ART2, we have to apply an error range. In case that the subtraction of the first distance from the second distance for each distance obtained to apply DTW is 20 or more, the error range is applied. Likewise, ART2 was applied and we could obtain fast process and high recognition rate. Moreover, since this system is a moving object, the system should be implemented as an embedded one. Thus, we selected TMS320C32 chip, which can process significantly many calculations relatively fast, to implement the embedded system. Considering that the memory is speech, we used 128kbyte-RAM and 64kbyte ROM to save large amount of data. In case of speech input, we used 16-bit stereo audio codec, securing relatively accurate data through high resolution capacity.

SVM Based Speaker Verification Using Sparse Maximum A Posteriori Adaptation

  • Kim, Younggwan;Roh, Jaeyoung;Kim, Hoirin
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.2 no.5
    • /
    • pp.277-281
    • /
    • 2013
  • Modern speaker verification systems based on support vector machines (SVMs) use Gaussian mixture model (GMM) supervectors as their input feature vectors, and the maximum a posteriori (MAP) adaptation is a conventional method for generating speaker-dependent GMMs by adapting a universal background model (UBM). MAP adaptation requires the appropriate amount of input utterance due to the number of model parameters to be estimated. On the other hand, with limited utterances, unreliable MAP adaptation can be performed, which causes adaptation noise even though the Bayesian priors used in the MAP adaptation smooth the movements between the UBM and speaker dependent GMMs. This paper proposes a sparse MAP adaptation method, which is known to perform well in the automatic speech recognition area. By introducing sparse MAP adaptation to the GMM-SVM-based speaker verification system, the adaptation noise can be mitigated effectively. The proposed method utilizes the L0 norm as a regularizer to induce sparsity. The experimental results on the TIMIT database showed that the sparse MAP-based GMM-SVM speaker verification system yields a 42.6% relative reduction in the equal error rate with few additional computations.

  • PDF

A Study on Design and Implementation of Embedded System for speech Recognition Process

  • Kim, Jung-Hoon;Kang, Sung-In;Ryu, Hong-Suk;Lee, Sang-Bae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.14 no.2
    • /
    • pp.201-206
    • /
    • 2004
  • This study attempted to develop a speech recognition module applied to a wheelchair for the physically handicapped. In the proposed speech recognition module, TMS320C32 was used as a main processor and Mel-Cepstrum 12 Order was applied to the pro-processor step to increase the recognition rate in a noisy environment. DTW (Dynamic Time Warping) was used and proven to be excellent output for the speaker-dependent recognition part. In order to utilize this algorithm more effectively, the reference data was compressed to 1/12 using vector quantization so as to decrease memory. In this paper, the necessary diverse technology (End-point detection, DMA processing, etc.) was managed so as to utilize the speech recognition system in real time

Speech Recognition of Multi-Syllable Words Using Soft Computing Techniques (소프트컴퓨팅 기법을 이용한 다음절 단어의 음성인식)

  • Lee, Jong-Soo;Yoon, Ji-Won
    • Transactions of the Society of Information Storage Systems
    • /
    • v.6 no.1
    • /
    • pp.18-24
    • /
    • 2010
  • The performance of the speech recognition mainly depends on uncertain factors such as speaker's conditions and environmental effects. The present study deals with the speech recognition of a number of multi-syllable isolated Korean words using soft computing techniques such as back-propagation neural network, fuzzy inference system, and fuzzy neural network. Feature patterns for the speech recognition are analyzed with 12th order thirty frames that are normalized by the linear predictive coding and Cepstrums. Using four models of speech recognizer, actual experiments for both single-speakers and multiple-speakers are conducted. Through this study, the recognizers of combined fuzzy logic and back-propagation neural network and fuzzy neural network show the better performance in identifying the speech recognition.

A Study on the Mixed Model Approach and Symbol Probability Weighting Function for Maximization of Inter-Speaker Variation (화자간 변별력 최대화를 위한 혼합 모델 방식과 심볼 확률 가중함수에 관한 연구)

  • Chin Se-Hoon;Kang Chul-Ho
    • The Journal of the Acoustical Society of Korea
    • /
    • v.24 no.7
    • /
    • pp.410-415
    • /
    • 2005
  • Recently, most of the speaker verification systems are based on the pattern recognition approach method. And performance of the pattern-classifier depends on how to classify a variety of speakers' feature parameters. In order to classify feature parameters efficiently and effectively, it is of great importance to enlarge variations between speakers and effectively measure distances between feature parameters. Therefore, this paper would suggest the positively mixed model scheme that can enlarge inter-speaker variation by searching the individual model with world model at the same time. During decision procedure, we can maximize inter-speaker variation by using the proposed mixed model scheme. We also make use of a symbol probability weighting function in this system so as to reduce vector quantization errors by measuring symbol probability derived from the distance rate of between the world codebook and individual codebook. As the result of our experiment using this method, we could halve the Detection Cost Function (DCF) of the system from $2.37\%\;to\;1.16\%$.

A Phase-related Feature Extraction Method for Robust Speaker Verification (열악한 환경에 강인한 화자인증을 위한 위상 기반 특징 추출 기법)

  • Kwon, Chul-Hong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.3
    • /
    • pp.613-620
    • /
    • 2010
  • Additive noise and channel distortion strongly degrade the performance of speaker verification systems, as it introduces distortion of the features of speech. This distortion causes a mismatch between the training and recognition conditions such that acoustic models trained with clean speech do not model noisy and channel distorted speech accurately. This paper presents a phase-related feature extraction method in order to improve the robustness of the speaker verification systems. The instantaneous frequency is computed from the phase of speech signals and features from the histogram of the instantaneous frequency are obtained. Experimental results show that the proposed technique offers significant improvements over the standard techniques in both clean and adverse testing environments.

Speech Parameters for the Robust Emotional Speech Recognition (감정에 강인한 음성 인식을 위한 음성 파라메터)

  • Kim, Weon-Goo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.12
    • /
    • pp.1137-1142
    • /
    • 2010
  • This paper studied the speech parameters less affected by the human emotion for the development of the robust speech recognition system. For this purpose, the effect of emotion on the speech recognition system and robust speech parameters of speech recognition system were studied using speech database containing various emotions. In this study, mel-cepstral coefficient, delta-cepstral coefficient, RASTA mel-cepstral coefficient and frequency warped mel-cepstral coefficient were used as feature parameters. And CMS (Cepstral Mean Subtraction) method were used as a signal bias removal technique. Experimental results showed that the HMM based speaker independent word recognizer using vocal tract length normalized mel-cepstral coefficient, its derivatives and CMS as a signal bias removal showed the best performance of 0.78% word error rate. This corresponds to about a 50% word error reduction as compare to the performance of baseline system using mel-cepstral coefficient, its derivatives and CMS.

Emotion Recognition using Robust Speech Recognition System (강인한 음성 인식 시스템을 사용한 감정 인식)

  • Kim, Weon-Goo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.18 no.5
    • /
    • pp.586-591
    • /
    • 2008
  • This paper studied the emotion recognition system combined with robust speech recognition system in order to improve the performance of emotion recognition system. For this purpose, the effect of emotional variation on the speech recognition system and robust feature parameters of speech recognition system were studied using speech database containing various emotions. Final emotion recognition is processed using the input utterance and its emotional model according to the result of speech recognition. In the experiment, robust speech recognition system is HMM based speaker independent word recognizer using RASTA mel-cepstral coefficient and its derivatives and cepstral mean subtraction(CMS) as a signal bias removal. Experimental results showed that emotion recognizer combined with speech recognition system showed better performance than emotion recognizer alone.