• 제목/요약/키워드: Speaker Adaptation

검색결과 122건 처리시간 0.022초

음성 인식 시스템의 화자 적응 성능 향상을 위한 코드북 설계 (On Codebook Design to Improve Speaker Adaptation)

  • 양태영;신원호;김원구;윤대희
    • 한국음향학회지
    • /
    • 제15권2호
    • /
    • pp.5-11
    • /
    • 1996
  • 본 논문에서는 반연속 HMM(semi-continuous Hidden Markov Model) 음성 인식 시스템에 적용되는 베이시안 화자 적응(Bayesian speaker adaptation)의 성능 향상을 위해 코드북 변환 알고리즘을 제안하였다. 기존 베이시안 화자 적응 알고리즘의 경우 새로운 화자의 특징 분포와 코드북 사전 밀도의 차이가 큰 경우 적응 데이터와 코드북간의 잘못된 대응 관계를 얻을 수 있으며, 기준(reference) 코드북에 필요 이상으로 많은 코드워드가 존재하는 경우 적응된 코드북에도 불필요한 코드워드들이 남아 인식 과정에 혼란을 줄 수 있다. 이 문제점을 해결하기 위하여 제안된 코드북 변환 알고리즘에서는 주파수 영역의 포만트 정보를 이용하였다. 화자 적응을 수행하기 앞서 코드북의 켑스트럼으로부터 포만트를 추출해 내고, 이들의 분포를 적응 화자의 포만트 분포와 일치되도록 변환시켜 주었다. 이 변환된 포만트들로부터 다시 켑스트럼을 구하여 변환된 코드북을 얻고, 이를 화자 적응의 초기 코드북으로 사용하였다. 제안된 알고리즘을 이용하였을 경우 코드북과 적응 화자의 음성 간의 정확한 대응 관계를 찾을 수 있었고, 불필요한 코드워드들이 인식 과정에서 사용되지 않도록 변환되어 인식률이 향상되는 것을 실험을 통해 확인하였다.

  • PDF

Speaker Adaptation Using i-Vector Based Clustering

  • Kim, Minsoo;Jang, Gil-Jin;Kim, Ji-Hwan;Lee, Minho
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제14권7호
    • /
    • pp.2785-2799
    • /
    • 2020
  • We propose a novel speaker adaptation method using acoustic model clustering. The similarity of different speakers is defined by the cosine distance between their i-vectors (intermediate vectors), and various efficient clustering algorithms are applied to obtain a number of speaker subsets with different characteristics. The speaker-independent model is then retrained with the training data of the individual speaker subsets grouped by the clustering results, and an unknown speech is recognized by the retrained model of the closest cluster. The proposed method is applied to a large-scale speech recognition system implemented by a hybrid hidden Markov model and deep neural network framework. An experiment was conducted to evaluate the word error rates using Resource Management database. When the proposed speaker adaptation method using i-vector based clustering was applied, the performance, as compared to that of the conventional speaker-independent speech recognition model, was improved relatively by as much as 12.2% for the conventional fully neural network, and by as much as 10.5% for the bidirectional long short-term memory.

한국어 격리단어 인식 시스템에서 HMM 파라미터의 화자 적응 (Speaker Adaptation in HMM-based Korean Isoklated Word Recognition)

  • 오광철;이황수;은종관
    • 대한전기학회논문지
    • /
    • 제40권4호
    • /
    • pp.351-359
    • /
    • 1991
  • This paper describes performances of speaker adaptation using a probabilistic spectral mapping matrix in hidden-Markov model(HMM) -based Korean isolated word recognition. Speaker adaptation based on probabilistic spectral mapping uses a well-trained prototype HMM's and is carried out by Viterbi, dynamic time warping, and forward-backward algorithms. Among these algorithms, the best performance is obtained by using the Viterbi approach together with codebook adaptation whose improvement for isolated word recognition accuracy is 42.6-68.8 %. Also, the selection of the initial values of the matrix and the normalization in computing the matrix affects the recognition accuracy.

참조화자로부터 추정된 적응적 혼성 사전분포를 이용한 MAPLR 고속 화자적응 (Rapid Speaker Adaptation Based on MAPLR with Adaptive Hybrid Priors Estimated from Reference Speakers)

  • 송영록;김형순
    • 한국음향학회지
    • /
    • 제30권6호
    • /
    • pp.315-323
    • /
    • 2011
  • 본 논문은 maximum a posteriori linear regression (MAPLR) 기반의 고속 화자적응 성능을 개선하기 위하여 사전분포를 추정하는 두 가지 방식을 제안한다. 일반적으로 MAPLR 방식에서 사용되는 변환행렬의 사전분포는 화자독립모델을 구성하는 훈련 화자들로부터 추정되어 모든 화자들에게 동등하게 적용된다. 본 논문에서는 새로운 화자에게 보다 더 적합한 사전분포를 적용하고자 적응 데이터를 이용하여 새로운 화자의 음향특성과 가까운 참조화자 집단을 선택한 후 참조화자 집단으로부터 사전분포를 추정하는 방법을 제안한다. 또한, 블록 대각 형태의 변환행렬의 사전분포를 추정하는 경우 사전분포의 평균행렬과 공분산행렬을 동일한 훈련 화자들로부터 얻어진 두 가지 형태의 변환행렬집단으로부터 각각 추정하는 방법을 제안한다. 제안된 방법의 성능 평가를 위하여 고립단어 인식실험을 통해 적응 단어의 개수에 따른 단어 인식률을 평가한다. 실험결과, 적응 단어 수가 매우 적을 때 기존의 MAPLR 방식에 비하여 통계적으로 유의미한 성능향상이 얻어짐을 보여준다.

차원별 Eigenvoice와 화자적응 모드 선택에 기반한 고속화자적응 성능 향상 (Performance Improvement of Fast Speaker Adaptation Based on Dimensional Eigenvoice and Adaptation Mode Selection)

  • 송화전;이윤근;김형순
    • 한국음향학회지
    • /
    • 제22권1호
    • /
    • pp.48-53
    • /
    • 2003
  • Eigenvoice 방법은 고속화자적응에 적합하다고 알려져 있지만, 이 방법은 발화수가 증가하더라도 추가적인 인식성능향상이 이루어지지 않는 단점이 있다. 본 논문에서는 이 문제를 해결하기 위해 음성 특징벡터의 차원별로 eigenvoice의 가중치를 구하여 적응시키는 방법과 또한 적응 데이터 수에 따라 높은 인식률을 얻는 적응 방식을 선택하는 방식을 제안한다. 화자독립모델 및 eigenvoice들을 구성하기 위해 POW (Phonetically Optimized Words)데이터베이스를 사용하였으며, PBW(Phonetically Balanced Words) 452단어 중50개까지 발화 수를 변화시키면서 교사방식 (Supervised mode)로 적응에 사용하고 나머지 중 400개를 인식실험에 사용하였다. 차원별 eigenvoice 방법이 발화수가 증가함에 따라 기존의 eigenvoice 나 MLLR 방법보다 높은 성능을 보였으며, eigenvoice와 차원별 eigenvoice방법 사이의 적응 모드 선택을 통해 기존의 eigenvoice 방식에 비해 최고 26%의 단어 오인식률 감소를 얻었다.

Fast speaker adaptation using extended diagonal linear transformation for deep neural networks

  • Kim, Donghyun;Kim, Sanghun
    • ETRI Journal
    • /
    • 제41권1호
    • /
    • pp.109-116
    • /
    • 2019
  • This paper explores new techniques that are based on a hidden-layer linear transformation for fast speaker adaptation used in deep neural networks (DNNs). Conventional methods using affine transformations are ineffective because they require a relatively large number of parameters to perform. Meanwhile, methods that employ singular-value decomposition (SVD) are utilized because they are effective at reducing adaptive parameters. However, a matrix decomposition is computationally expensive when using online services. We propose the use of an extended diagonal linear transformation method to minimize adaptation parameters without SVD to increase the performance level for tasks that require smaller degrees of adaptation. In Korean large vocabulary continuous speech recognition (LVCSR) tasks, the proposed method shows significant improvements with error-reduction rates of 8.4% and 17.1% in five and 50 conversational sentence adaptations, respectively. Compared with the adaptation methods using SVD, there is an increased recognition performance with fewer parameters.

모의 음성 모델을 이용한 효과적인 구개인두부전증 환자 음성 인식 (Effective Recognition of Velopharyngeal Insufficiency (VPI) Patient's Speech Using Simulated Speech Model)

  • 성미영;권택균;성명훈;김우일
    • 한국정보통신학회논문지
    • /
    • 제19권5호
    • /
    • pp.1243-1250
    • /
    • 2015
  • 본 논문에서는 VPI 환자 음성을 정상인 음성으로 복원하기 위한 기술의 단계로서 효과적인 VPI 음성 인식 기술을 소개한다. 소량의 VPI 환자 음성을 모델 적응에 효과적으로 사용하기 위해 정상인의 모의 음성을 이용하여 화자 적응을 위한 사전 모델로 이용하는 기법을 제안한다. MLLR 기법을 이용한 화자 적응을 통해 평균 83.60%의 인식률을 보이고, 모의 음성 모델을 화자 적응의 사전 모델로 이용함으로써 평균 6.38%의 인식률 향상을 가져온다. 음소 인식 평가 결과는 제안한 화자 적응 방식이 대폭적인 음성 인식 성능 향상을 가져오는 것을 증명한다. 이러한 결과는 본 논문에서 제안하는 모의 음성 모델을 이용한 화자 적응 기법이 대량의 VPI 환자 음성을 취득하기 어려운 조건에서 보다 향상된 성능의 VPI 환자 음성 인식기를 구축하는데 효과적임을 입증한다.

바이어스 보상과 차원별 Eigenvoice 모델 평균을 이용한 고속화자적응의 성능향상 (Performance Improvement of Rapid Speaker Adaptation Using Bias Compensation and Mean of Dimensional Eigenvoice Models)

  • 박종세;김형순;송화전
    • 한국음향학회지
    • /
    • 제23권5호
    • /
    • pp.383-389
    • /
    • 2004
  • 본 논문에서는 훈련 및 인식 환경이 다른 상황에서 eigenvoice 기반 고속화자적응의 성능향상을 위하여 바이어스 보상을 적용한 eigenvoice 적응방식과 차원별 eigenvoice 모델 평균 가중합 방식을 제안하였다. PBW 452 DB를 사용한 어휘독립 단어인식 실험 결과에서 적은 양의 적응데이터를 사용했을 때 제안된 방식이 기존의 eigenvoice 방식에 비하여 많은 성능향상을 얻을 수 있었다. 적응단어 수를 1개에서 50개로 변경시키면서 바이어스 보상을 적용한 eigenvoice 적응방식을 사용한 경우 기존 eigenvoice 방식보다 단어 오인식률이 약 22∼30% 감소하였다. 또한 차원별 eigenvoice 모델 평균을 이용한 eigenvoice 적응방식에서는 1개의 단어를 적응데이터로 사용했을 경우에 기존 eigenvoice 방식보다 단어 오인식률이 최고 41%까지 감소하였다.

다양한 잡음 환경하에서 환경 군집화를 통한 화자 및 환경 동시 적응 (Simultaneous Speaker and Environment Adaptation by Environment Clustering in Various Noise Environments)

  • 김영국;송화전;김형순
    • 한국음향학회지
    • /
    • 제28권6호
    • /
    • pp.566-571
    • /
    • 2009
  • 본 논문에서는 eigenvoice 방식에 기반하여 다양한 잡음 환경에 강인한 고속 화자 적응 방법을 제안하였다. 제안된 방법은 잡음 제거 기술과 환경 군집화 방법을 기반으로 한다. 그러나, 잡음 제거 기술을 통해 잡음을 제거한 후에도 여전히 잔여 잡음이 존재하므로 비음성 구간의 켑스트럼 평균을 사용하여 잡음 환경별로 화자 적응 데이터를 분류한 후 각각의 환경별로 환경 모델을 구성한다. 이러한 환경 군집화를 적응데이터에 대해 구성한 후 테스트 음성이 입력되면 군집화된 모델 중에서 인식 데이터와 가장 유사한 복수의 환경별 군집화된 화자 적응 모델을 구한 후 이들의 가중함을 통해 화자 적응을 수행하는 방법이다. 제안된 방법은 적응 및 평가를 통해 화자 독립 모델을 사용한 경우에 비해 $40{\sim}59%$ 인식 오류 감소율을 얻었다.

여러 화자 적응 방법들의 특성 비교 (The Comparison of Characteristics in various Speaker Adaptation Methods)

  • 황영수
    • 한국음향학회:학술대회논문집
    • /
    • 한국음향학회 1998년도 학술발표대회 논문집 제17권 2호
    • /
    • pp.339-342
    • /
    • 1998
  • In this paper, we proposed various speaker adaptation methods and studied the performance of these methods. Methods which were studied in this paper are MAPE(Maximum A Posteriori Probability Estimation), ARTMAP. In order to evaluate the performance of these methods, we used Korean isolated digits as the experimental data, the hybrid speaker adaptation method, which unfied MAPE, linear spectral estimating and outpur probability of SCHMM, showed the better recognition result than those which performed other methods. And the method using ARTMAP showed the similar result to above hybrid method.

  • PDF