• Title/Summary/Keyword: Spattering ratio

Search Result 4, Processing Time 0.019 seconds

Effect of S on Spatter Generation and Droplet Transfer Phenomena of MAG Welding (MAG용접의 스패터 발생 및 용적이행현상에 미치는 S의 영향)

  • 안영호;이종봉;최원규
    • Journal of Welding and Joining
    • /
    • v.19 no.5
    • /
    • pp.486-491
    • /
    • 2001
  • The effect of S content in welding wires on spattering characteristics and droplet transfer phenomena was studied. In MAG welding using 80%Ar-$20%CO_2$ shielding gas, spattering characteristics and droplet transfer phenomena were varied with S content of wire. Sulfur addition in wire reduced surface tension of droplet and weld pool, and made arc more stable in MAG welding. With increasing S content, the spattering ratio and the ratio of large size spatter ($d{\geq}1.0mm$) were reduced in short circuit transfer mode. In spray transfer mode, spattering ratio, however was increased when sulfur was added more than 0.020wt.% because surface tension of droplets and weld pool was reduced too much even though arc stability was improved.

  • PDF

Effect of Si on Spatter Generation and Droplet Transfer Phenomena of MAG Wwlding (MAG 용접의 스패터 발생 및 용적이행현상에 미치는 Si의 영향)

  • 안영호;이종봉;엄동석
    • Journal of Welding and Joining
    • /
    • v.17 no.3
    • /
    • pp.36-43
    • /
    • 1999
  • The effect of Si content in welding wires on spattering characteristics and droplet transfer phenomena was studied. In MAG welding using 80% Ar-20% $CO_2$ shielding gas, spattering characteristics and droplet transfer phenomena were varied with Si content of wire. With increasing Si content, the spattering ratio and the ratio of large size spatter $(d\geq1.0mm)$ were increased. The increase of Si content in molten metal made surface tension increase due to reduction of oxygen content, which resulted from deoxidizing action of silicon. The increase of surface tension resulted in unstable transfer phenomena and arc instability in both short circuit and spray region. With changing Si content of wire, spattering characteristics and droplet transfer phenomena was directly influenced by the variation of surface tension, compared with the effect of arc stability.

  • PDF

Relation between Arc Phenomena and Spattering Ratio of Flux Cored Arc Welding with 100% $CO_2$ Shielding gas (플럭스 코어드 아크 용접의 아크현상과 스패터 발생량과의 관계)

  • S.W. Kang;D.S. Um;E.S. Oh;D.S. You
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.35 no.4
    • /
    • pp.65-75
    • /
    • 1998
  • The $CO_2$ welding with 100% $CO_2$ gas is commonly used because of its cost and efficiency. Arc phenomena and spattering ratio of the $CO_2$ welding are influenced by various factors such as chemical compositions of welding wire, shielding gas, welding condition and welding power source etc.. Spattering ratio is predominantly influenced by the welding condition which determines a droplet transfer rode. In this study, arc phenomena and spattering ratio are investigated by using two type of FCW(titania type, semi-metal type). Then, the welding quality and optimum welding condition can be selected. From this study, the following results ware obtained; 1) In low current range(140A), FCW up to welding voltage(22V) resulted in a typical short circuit transfer, increase of spattering ratio and growth of spatter diameter. 2) In high current range(320A), the arc stability in titania FCW of a typical globular transfer is better than that of semi-metal FCW.

  • PDF

Effect of Ti on Spatter Generation of $CO_2$Welding ($CO_2$용접시 Spatter발생에 미치는 Ti의 영향)

  • 안영호;이종봉;방국수;엄동석
    • Journal of Welding and Joining
    • /
    • v.14 no.5
    • /
    • pp.106-112
    • /
    • 1996
  • The effects of Ti addition in welding wire on the spatter generation and the droplet transfer phenomena were investigated. With increasing Ti content the spattering rate was decreased but the ratio of large size spatter (D $\geq$ 1. 0mm) was increased in both short circuit and globular transfer mode of $CO_2$welding. In short circuit transfer region, the arcing time was increased and the droplet transfer frequency was decreased with increasing Ti content In globular transfer region, the transition current and voltage to globular transfer was lowered and the welding condition region for stable globular transfer was widened with increasing Ti content.

  • PDF