• Title/Summary/Keyword: Spatiotemporal Database

Search Result 61, Processing Time 0.031 seconds

Design of Solar Radiation Energy Data Management System (일사량 에너지 데이터 관리 시스템 설계)

  • Oh, In-Bae;Ahn, Yoon-Ae;Ryu, Keun-Ho;Kim, Kwang-Deuk
    • The KIPS Transactions:PartD
    • /
    • v.10D no.3
    • /
    • pp.531-540
    • /
    • 2003
  • Because of the rapid increase of energy consumption, we have some problems such as environmental pollution, global warming, the oil shocks, and so on. To solve these problems, concern about renewable energy such as solar energy, wind force, and water energy is continuously increasing. America, Europe, and Japan have developed a system that manage and utilize the information of the renewable energy resources. However, in the domestic, renewable energy information system was not effectively built yet. Therefore, in this paper, we propose a renewable energy information system, which store and manage solar radiation energy data. We implemented the system using ArcView GIS. Also the system is able to retrieve the information from the energy database through various spatiotemporal queries. In addition, user can identify the results of summary data in the form of chart, graph, and counter line. The implemented system is supplied to the user through the web by ArcIMS.

Uncertainty for Privacy and 2-Dimensional Range Query Distortion

  • Sioutas, Spyros;Magkos, Emmanouil;Karydis, Ioannis;Verykios, Vassilios S.
    • Journal of Computing Science and Engineering
    • /
    • v.5 no.3
    • /
    • pp.210-222
    • /
    • 2011
  • In this work, we study the problem of privacy-preservation data publishing in moving objects databases. In particular, the trajectory of a mobile user in a plane is no longer a polyline in a two-dimensional space, instead it is a two-dimensional surface of fixed width $2A_{min}$, where $A_{min}$ defines the semi-diameter of the minimum spatial circular extent that must replace the real location of the mobile user on the XY-plane, in the anonymized (kNN) request. The desired anonymity is not achieved and the entire system becomes vulnerable to attackers, since a malicious attacker can observe that during the time, many of the neighbors' ids change, except for a small number of users. Thus, we reinforce the privacy model by clustering the mobile users according to their motion patterns in (u, ${\theta}$) plane, where u and ${\theta}$ define the velocity measure and the motion direction (angle) respectively. In this case, the anonymized (kNN) request looks up neighbors, who belong to the same cluster with the mobile requester in (u, ${\theta}$) space: Thus, we know that the trajectory of the k-anonymous mobile user is within this surface, but we do not know exactly where. We transform the surface's boundary poly-lines to dual points and we focus on the information distortion introduced by this space translation. We develop a set of efficient spatiotemporal access methods and we experimentally measure the impact of information distortion by comparing the performance results of the same spatiotemporal range queries executed on the original database and on the anonymized one.

Design and Implementation of e-Logistics System supporting Efficient Moving Objects Trajectory Management (효율적인 차량 궤적 관리를 지원하는 물류관리시스템의 설계 및 구현)

  • Lee, Eung-Jae;Nam, Kwang-Woo;Ryu, Keun-Ho
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.9 no.2
    • /
    • pp.30-41
    • /
    • 2006
  • This paper proposes an e-logistics system supporting efficient vehicle moving trajectory management. Recent advances in wireless communications have given rise to a number of location-based services including logistics vehicle tracking, cellular phone user's location finding, and location-based commerce. Logistics systems typically entail tracking vehicles for purposes of the logistics center knowing the whereabouts of the vehicles and/or consignments. Moreover, storing and managing location trajectory of continuously moving vehicles and consignments is necessary for supporting efficient logistics plan and consignment. The proposed system is able to manage spatial objects in GIS as well as logistic information in the mobile environment. And for the efficiently managing and retrieving of transporting trajectory of logistics, we extend previous moving object indexing method, TB-Tree, to use multi-version framework and evaluate data updating performance. It is able to apply the proposed method to develop mobile contents services based on continuously changing location of moving object in the mobile environment.

  • PDF

Reefer Container Monitoring System using Trajectory Information (궤적 정보를 이용한 냉동 컨테이너 모니터링 시스템)

  • Lee, Myung-Jin;Lee, Eung-Jae;Ha, Deok-Cheon;Ryu, Keun-Ho;Baek, Seung-Jae
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.8 no.1
    • /
    • pp.23-39
    • /
    • 2005
  • As developing satellite communication, the tracking range of the moving objects which move in local area is expanded to the whole world. However previous logistics management system is able to monitor freight which transporting in local area using mobile communication system. In this paper, we propose the reefer container management system that manages the location information and other related information such as temperature, humidity of container using the satellite system. The proposed system consists of three parts; data collector, satellite communication manager, reefer container information manager. And the proposed system uses the moving object index for managing the trajectory of container and tracing the location of container or vessel that is transporting the container, and supports various services such as reefer container and vessel tracking, container control and container statistics to logistic companies like shipper and forwarding agent. And the system can be increasing the quality of container transportation service to the shipper, and it makes the efficient management of reefer container to the shipping company.

  • PDF

Design of A Moving Object Management System for Tracking Vehicle Location (차량 위치 추적을 위한 이동 객체 관리 시스템의 설계)

  • Ahn, Yoon-Ae;Kim, Dong-Ho;Ryu, Keun-Ho
    • The KIPS Transactions:PartD
    • /
    • v.9D no.5
    • /
    • pp.827-836
    • /
    • 2002
  • Moving object management systems manage spatiotemporal data, which change their location over tine such as people, animals, and cars. These moving object management systems can be applied to vehicle location tracking, digital battlefield, location-based service, and so on. The existing moving object management systems only manage past or future location of the moving objects separately. Therefore, they cannot suggest estimation method of uncertain past or future location of the moving objects. In this paper, we propose a moving object management system, which not only manages historical data of the moving objects, but also predicts past and future location of the moving objects using historical data stored in database. We define the moving objects for vehicle location tracking and propose a moving object database structure. Finally, we suggest an execution model of the proposed system and apply the execution model to a virtual scenario for vehicle tracking.

Policies of Trajectory Clustering in Index based on R-trees for Moving Objects (이동체를 위한 R-트리 기반 색인에서의 궤적 클러스터링 정책)

  • Ban ChaeHoon;Kim JinGon;Jun BongGi;Hong BongHee
    • The KIPS Transactions:PartD
    • /
    • v.12D no.4 s.100
    • /
    • pp.507-520
    • /
    • 2005
  • The R-trees are usually used for an index of trajectories in moving-objects databases. However, they need to access a number of nodes to trace same trajectories because of considering only a spatial proximity. Overlaps and dead spaces should be minimized to enhance the performance of range queries in moving-objects indexes. Trajectories of moving-objects should be preserved to enhance the performance of the trajectory queries. In this paper, we propose the TP3DR-tree(Trajectory Preserved 3DR-tree) using clusters of trajectories for range and trajectory queries. The TP3DR-tree uses two split policies: one is a spatial splitting that splits the same trajectory by clustering and the other is a time splitting that increases space utilization. In addition, we use connecting information in non-leaf nodes to enhance the performance of combined-queries. Our experiments show that the new index outperforms the others in processing queries on various datasets.

The Distributed Management System of Moving Objects for LBS

  • Jang, In-Sung;Cho, Dae-Soo;Park, Jong-Hyun
    • Proceedings of the KSRS Conference
    • /
    • 2002.10a
    • /
    • pp.163-167
    • /
    • 2002
  • Recently, owing to performance elevation of telecommunication technology, increase of wireless internet's subscriber and diffusion of wireless device, Interest about LBS (Location Based Service) which take advantage of user's location information and can receive information in concerning with user's location is increasing rapidly. So, MOMS (Moving Object Management System) that manage user's location information is required compulsorily to provide location base service. LBS of childhood such as service to find a friend need only current location, but to provide high-quality service in connection with Data Mining, CRM, We must be able to manage location information of past. In this paper, we design distributed manage system to insert and search Moving Object in a large amount. It has been consisted of CLIM (Current Location Information Manager), PLIM (Past-Location Information Manager) and BLIM (Distributed Location Information Manager). CLIM and PLIM prove performance of searching data by using spatiotemporal-index. DLIM distribute an enormous amount of location data to various database. Thus it keeps load-balance, regulates overload and manage a huge number of location information efficiently.

  • PDF

Autonomous vision-based damage chronology for spatiotemporal condition assessment of civil infrastructure using unmanned aerial vehicle

  • Mondal, Tarutal Ghosh;Jahanshahi, Mohammad R.
    • Smart Structures and Systems
    • /
    • v.25 no.6
    • /
    • pp.733-749
    • /
    • 2020
  • This study presents a computer vision-based approach for representing time evolution of structural damages leveraging a database of inspection images. Spatially incoherent but temporally sorted archival images captured by robotic cameras are exploited to represent the damage evolution over a long period of time. An access to a sequence of time-stamped inspection data recording the damage growth dynamics is premised to this end. Identification of a structural defect in the most recent inspection data set triggers an exhaustive search into the images collected during the previous inspections looking for correspondences based on spatial proximity. This is followed by a view synthesis from multiple candidate images resulting in a single reconstruction for each inspection round. Cracks on concrete surface are used as a case study to demonstrate the feasibility of this approach. Once the chronology is established, the damage severity is quantified at various levels of time scale documenting its progression through time. The proposed scheme enables the prediction of damage severity at a future point in time providing a scope for preemptive measures against imminent structural failure. On the whole, it is believed that the present study will immensely benefit the structural inspectors by introducing the time dimension into the autonomous condition assessment pipeline.

Land Cover Classification over East Asian Region Using Recent MODIS NDVI Data (2006-2008) (최근 MODIS 식생지수 자료(2006-2008)를 이용한 동아시아 지역 지면피복 분류)

  • Kang, Jeon-Ho;Suh, Myoung-Seok;Kwak, Chong-Heum
    • Atmosphere
    • /
    • v.20 no.4
    • /
    • pp.415-426
    • /
    • 2010
  • A Land cover map over East Asian region (Kongju national university Land Cover map: KLC) is classified by using support vector machine (SVM) and evaluated with ground truth data. The basic input data are the recent three years (2006-2008) of MODIS (MODerate Imaging Spectriradiometer) NDVI (normalized difference vegetation index) data. The spatial resolution and temporal frequency of MODIS NDVI are 1km and 16 days, respectively. To minimize the number of cloud contaminated pixels in the MODIS NDVI data, the maximum value composite is applied to the 16 days data. And correction of cloud contaminated pixels based on the spatiotemporal continuity assumption are applied to the monthly NDVI data. To reduce the dataset and improve the classification quality, 9 phenological data, such as, NDVI maximum, amplitude, average, and others, derived from the corrected monthly NDVI data. The 3 types of land cover maps (International Geosphere Biosphere Programme: IGBP, University of Maryland: UMd, and MODIS) were used to build up a "quasi" ground truth data set, which were composed of pixels where the three land cover maps classified as the same land cover type. The classification results show that the fractions of broadleaf trees and grasslands are greater, but those of the croplands and needleleaf trees are smaller compared to those of the IGBP or UMd. The validation results using in-situ observation database show that the percentages of pixels in agreement with the observations are 80%, 77%, 63%, 57% in MODIS, KLC, IGBP, UMd land cover data, respectively. The significant differences in land cover types among the MODIS, IGBP, UMd and KLC are mainly occurred at the southern China and Manchuria, where most of pixels are contaminated by cloud and snow during summer and winter, respectively. It shows that the quality of raw data is one of the most important factors in land cover classification.

Temporospatial clustering analysis of foot-and-mouth disease transmission in South Korea, 2010~2011 (시공간 클러스터링 분석을 이용한 2010~2011 국내 발생 구제역 전파양상)

  • Bae, Sun-Hak;Shin, Yeun-Kyung;Kim, Byunghan;Pak, Son-Il
    • Korean Journal of Veterinary Research
    • /
    • v.53 no.1
    • /
    • pp.49-54
    • /
    • 2013
  • To investigate the transmission pattern of geographical area and temporal trends of the 2010~2011 foot-and-mouth disease (FMD) outbreaks in Korea, and to explore temporal intervals at which spatial clustering of FMD cases space-time analysis based on georeferenced database of 3,575 burial sites, from 30 November 2010 to 23 February 2011, was performed. The cases represent approximately 98.1% of all infected farms (n = 3,644) during the same period. Descriptive maps of spatial patterns of the outbreaks were generated by ArcGIS. Spatial Scan Statistics, using SaTScan software, was applied to investigate geographical clusters of FMD cases across the country. Overall, spatial heterogeneity was identified, and the transmission pattern was different by province. Cattle have more clusters in number but smaller in size, as compared to the swine population. In addition, spatiotemporal analysis and the comparison of clustering patterns between the first 7 days and days 8 to 14 of the outbreak revealed that the strongest spatial clustering was identified at the 7-day interval, although clustering over longer intervals (8~14 days) was also observed. We further discussed the importance of time period elapsed between FMD-suspected notice and the date of confirmation, and emphasized the necessity of region-specific and species-specific control measures.